Heterologous biosynthesis and characterization of the [2Fe-2S]- containing N-terminal domain of Clostridium pasteurianum hydrogenase

Mohamed Atta, Meghan E. Lafferty, Michael K. Johnson, Jacques Gaillard, Jacques Meyer

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

The primary structure of Clostridium pasteurianum hydrogenase I appears to be composed of modules suggesting that the various iron-sulfur clusters present in this enzyme might be segregated in structurally distinct domains. On the basis of this observation, a gene fragment encoding the 76 N-terminal residues of this enzyme has been expressed in Escherichia coli. The polypeptide thus produced contains a [2Fe-2S](n+) cluster of which the oxidized level (n = 2) has been monitored by UV-visible absorption, circular dichroism, and resonance Raman spectroscopy. This cluster can be reduced by dithionite or electrochemically to the n = 1 level which has been investigated by EPR and by low-temperature magnetic circular dichroism. The redox potential of the +2 to +1 transition is -400 mV (vs the normal hydrogen electrode). The spectroscopic and redox results indicate a [2Fe-2S](2+/+) chromophore coordinated by four cysteine ligands in a protein fold similar to that found in plant- and mammalian-type ferredoxins. Among the five cysteines present in the N-terminal hydrogenase fragment, four (in positions 34, 46, 49, and 62) are conserved in other sequences and are therefore the most likely ligands of the [2Fe-2S] site. The fifth cysteine, in position 39, can be dismissed on the grounds that the Cys39Ala mutation does not alter any of the properties of the iron-sulfur cluster. The spectroscopic signatures of this chromophore are practically identical with some of those reported for full-size hydrogenase. This confirms that C. pasteurianum hydrogenase I contains a [2Fe-2S] cluster and indicates that the polypeptide fold around the metal site of the N-terminal fragment is very similar, if not identical, to that occurring in the full-size protein. The N-terminal sequence of this hydrogenase is homologous to sequences of a number of proteins or protein domains, including a subunit of NADH-ubiquinone oxidoreductase of respiratory chains. From that, it can be anticipated that the structural domain isolated and described here is a building block of electron transfer complexes involved in various bioenergetic processes.

Original languageEnglish (US)
Pages (from-to)15974-15980
Number of pages7
JournalBiochemistry
Volume37
Issue number45
DOIs
StatePublished - Nov 10 1998

Fingerprint Dive into the research topics of 'Heterologous biosynthesis and characterization of the [2Fe-2S]- containing N-terminal domain of Clostridium pasteurianum hydrogenase'. Together they form a unique fingerprint.

Cite this