TY - JOUR
T1 - Hepatic gene expression in multiparous Holstein cows treated with bovine somatotropin and fed n-3 fatty acids in early lactation 1
AU - Carriquiry, M.
AU - Weber, Wanda J
AU - Fahrenkrug, S. C.
AU - Crooker, Brian A
PY - 2009/10
Y1 - 2009/10
N2 - Multiparous cows were fed supplemental dietary fat and treated with bST to assess effects of n-3 fatty acid supply, bovine somatotropin (bST), and stage of lactation on hepatic gene expression. Cows were blocked by expected calving date and previous milk yield and assigned randomly to treatment. Supplemental dietary fat was provided from calving as either whole high-oil sunflower seeds (SS; 10% of dietary dry matter; n-6/n-3 ratio of 4.6) as a source of linoleic acid or a mixture of Alifet-High Energy and Alifet-Repro (AF; 3.5 and 1.5% of dietary dry matter, respectively; n-6/n-3 ratio of 2.6) as a source of protected n-3 fatty acids. Cows were treated with 0 (SSN, AFN) or 500 (SSY, AFY) mg of bST every 10 d from 12 to 70 d in milk (DIM) and at 14-d intervals thereafter. Liver biopsies were collected on -12, 10, 24, and 136 DIM for gene expression analysis. Growth hormone receptor (GHR), insulin-like growth factor-I (IGF-I), IGF-binding protein-3 (IGFBP3), hepatic nuclear factor 4α (HNF4α), fibroblast growth factor-21 (FGF-21), and peroxisome proliferator-activated receptor α (PPARα) were the target genes and hypoxanthine phosphoribosyltransferase (HPRT) was used as an endogenous control gene. Expression was measured by quantitative real-time reverse transcription-PCR analyses of 4 samples from each of 32 cows (8 complete blocks). Amounts of hepatic HPRT mRNA were not affected by bST or diet but were increased by approximately 3.8% in early lactation (3.42, 3.52, 3.54, and 3.41 × 104 message copies for -12, 10, 24, and 136 DIM, respectively). This small change had little detectable impact on the ability of HPRT to serve as an internal control gene. Amounts of hepatic GHR, IGF-I, and IGFBP3 mRNA were reduced by 1.5 to 2-fold after calving. Expression of GHR and IGF-I increased and IGFBP3 tended to increase within 12 d (by 24 DIM) of bST administration. These effects of bST persisted through 136 DIM. Hepatic HNF4α mRNA was not altered by DIM or any of the treatments. Abundance of PPARα mRNA was unchanged through 24 DIM but increased by 136 DIM. There was a trend for an interaction of bST, diet, and DIM on PPARα mRNA abundance from 24 to 136 DIM because the amount of PPARα mRNA increased in SSN, SSY, and AFN cows but was not altered in AFY cows. The amount of FGF-21 mRNA increased markedly in early lactation but, like HNF4α mRNA, was not affected by bST, diet, or their interactions. These results indicate 1) that bST induced increases in hepatic expression of GHR, IGF-I, and IGFBP3 when cows were in negative energy balance in early lactation, 2) there was no effect of reduced dietary n-6/n-3 content on hepatic gene expression, and 3) there was support for a potential homeorhetic role of hepatic FGF-21 via uncoupling the somatotropin-IGFaxis in early lactation.
AB - Multiparous cows were fed supplemental dietary fat and treated with bST to assess effects of n-3 fatty acid supply, bovine somatotropin (bST), and stage of lactation on hepatic gene expression. Cows were blocked by expected calving date and previous milk yield and assigned randomly to treatment. Supplemental dietary fat was provided from calving as either whole high-oil sunflower seeds (SS; 10% of dietary dry matter; n-6/n-3 ratio of 4.6) as a source of linoleic acid or a mixture of Alifet-High Energy and Alifet-Repro (AF; 3.5 and 1.5% of dietary dry matter, respectively; n-6/n-3 ratio of 2.6) as a source of protected n-3 fatty acids. Cows were treated with 0 (SSN, AFN) or 500 (SSY, AFY) mg of bST every 10 d from 12 to 70 d in milk (DIM) and at 14-d intervals thereafter. Liver biopsies were collected on -12, 10, 24, and 136 DIM for gene expression analysis. Growth hormone receptor (GHR), insulin-like growth factor-I (IGF-I), IGF-binding protein-3 (IGFBP3), hepatic nuclear factor 4α (HNF4α), fibroblast growth factor-21 (FGF-21), and peroxisome proliferator-activated receptor α (PPARα) were the target genes and hypoxanthine phosphoribosyltransferase (HPRT) was used as an endogenous control gene. Expression was measured by quantitative real-time reverse transcription-PCR analyses of 4 samples from each of 32 cows (8 complete blocks). Amounts of hepatic HPRT mRNA were not affected by bST or diet but were increased by approximately 3.8% in early lactation (3.42, 3.52, 3.54, and 3.41 × 104 message copies for -12, 10, 24, and 136 DIM, respectively). This small change had little detectable impact on the ability of HPRT to serve as an internal control gene. Amounts of hepatic GHR, IGF-I, and IGFBP3 mRNA were reduced by 1.5 to 2-fold after calving. Expression of GHR and IGF-I increased and IGFBP3 tended to increase within 12 d (by 24 DIM) of bST administration. These effects of bST persisted through 136 DIM. Hepatic HNF4α mRNA was not altered by DIM or any of the treatments. Abundance of PPARα mRNA was unchanged through 24 DIM but increased by 136 DIM. There was a trend for an interaction of bST, diet, and DIM on PPARα mRNA abundance from 24 to 136 DIM because the amount of PPARα mRNA increased in SSN, SSY, and AFN cows but was not altered in AFY cows. The amount of FGF-21 mRNA increased markedly in early lactation but, like HNF4α mRNA, was not affected by bST, diet, or their interactions. These results indicate 1) that bST induced increases in hepatic expression of GHR, IGF-I, and IGFBP3 when cows were in negative energy balance in early lactation, 2) there was no effect of reduced dietary n-6/n-3 content on hepatic gene expression, and 3) there was support for a potential homeorhetic role of hepatic FGF-21 via uncoupling the somatotropin-IGFaxis in early lactation.
KW - Hepatic gene expression
KW - N-3 fatty acid
KW - Somatotropin
UR - http://www.scopus.com/inward/record.url?scp=70349904579&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349904579&partnerID=8YFLogxK
U2 - 10.3168/jds.2008-1676
DO - 10.3168/jds.2008-1676
M3 - Article
C2 - 19762804
AN - SCOPUS:70349904579
SN - 0022-0302
VL - 92
SP - 4889
EP - 4900
JO - Journal of Dairy Science
JF - Journal of Dairy Science
IS - 10
ER -