TY - JOUR
T1 - Heme degradation and vascular injury
AU - Belcher, John D
AU - Beckman, Joan D
AU - Balla, Gyorgy
AU - Balla, Jozsef
AU - Vercellotti, Gregory M
PY - 2010/1/15
Y1 - 2010/1/15
N2 - Heme is an essential molecule in aerobic organisms. Heme consists of protoporphyrin IX and a ferrous (Fe2+) iron atom, which has high affinity for oxygen (O2). Hemoglobin, the major oxygen-carrying protein in blood, is the most abundant heme-protein in animals and humans. Hemoglobin consists of four globin subunits (α2β 2), with each subunit carrying a heme group. Ferrous (Fe 2+) hemoglobin is easily oxidized in circulation to ferric (Fe 3+) hemoglobin, which readily releases free hemin. Hemin is hydrophobic and intercalates into cell membranes. Hydrogen peroxide can split the heme ring and release "free" redox-active iron, which catalytically amplifies the production of reactive oxygen species. These oxidants can oxidize lipids, proteins, and DNA; activate cell-signaling pathways and oxidant-sensitive, proinflammatory transcription factors; alter protein expression; perturb membrane channels; and induce apoptosis and cell death. Heme-derived oxidants induce recruitment of leukocytes, platelets, and red blood cells to the vessel wall; oxidize low-density lipoproteins; and consume nitric oxide. Heme metabolism, extracellular and intracellular defenses against heme, and cellular cytoprotective adaptations are emphasized. Sickle cell disease, an archetypal example of hemolysis, heme-induced oxidative stress, and cytoprotective adaptation, is reviewed.
AB - Heme is an essential molecule in aerobic organisms. Heme consists of protoporphyrin IX and a ferrous (Fe2+) iron atom, which has high affinity for oxygen (O2). Hemoglobin, the major oxygen-carrying protein in blood, is the most abundant heme-protein in animals and humans. Hemoglobin consists of four globin subunits (α2β 2), with each subunit carrying a heme group. Ferrous (Fe 2+) hemoglobin is easily oxidized in circulation to ferric (Fe 3+) hemoglobin, which readily releases free hemin. Hemin is hydrophobic and intercalates into cell membranes. Hydrogen peroxide can split the heme ring and release "free" redox-active iron, which catalytically amplifies the production of reactive oxygen species. These oxidants can oxidize lipids, proteins, and DNA; activate cell-signaling pathways and oxidant-sensitive, proinflammatory transcription factors; alter protein expression; perturb membrane channels; and induce apoptosis and cell death. Heme-derived oxidants induce recruitment of leukocytes, platelets, and red blood cells to the vessel wall; oxidize low-density lipoproteins; and consume nitric oxide. Heme metabolism, extracellular and intracellular defenses against heme, and cellular cytoprotective adaptations are emphasized. Sickle cell disease, an archetypal example of hemolysis, heme-induced oxidative stress, and cytoprotective adaptation, is reviewed.
UR - http://www.scopus.com/inward/record.url?scp=77949496427&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77949496427&partnerID=8YFLogxK
U2 - 10.1089/ars.2009.2822
DO - 10.1089/ars.2009.2822
M3 - Review article
C2 - 19697995
AN - SCOPUS:77949496427
SN - 1523-0864
VL - 12
SP - 233
EP - 248
JO - Antioxidants and Redox Signaling
JF - Antioxidants and Redox Signaling
IS - 2
ER -