TY - JOUR
T1 - Heme arginate and the endothelium
T2 - mechanism for its safety in porphyria
AU - Balla, J.
AU - Balla, G.
AU - Kakuk, G.
AU - Nath, K. A.
AU - Jacob, H. S.
AU - Vercellolti, G. M.
PY - 1996
Y1 - 1996
N2 - Acute intermittent porphyria (AIP) is a potential fatal disease characterized by decreased synthesis of heme and accumulation of porphyrin precursors. Infusion of hematin has proven efficacious, but with considerable vascular side effects such as thrombosis and DIG; in contrast, Finnish investigators have demonstrated that heme arginate (HA) is both effective and non-vasculotoxic. We have previously shown that heme (hemin chloride) serves as a catalytically active iron source, potentiating the oxidation of LDL and sensitizing endotnelial cells (EC) to oxidant injury. EC respond to heme and oxidant challenge by upregulating the cell cytoprotectants, heme oxygenase (HO) and ferritin. We now provide a mechanism that accounts for the relative safety and efficacy exhibited by HA treatment but not heme in AIP. HA does not amplify EC cytotoxicity mediated by H22O2 while heme pretreatment is markedly sensitizing (5.3+2.3 vs. 52.3±5.3% 5'Cr release respectively). Nevertheless, HA enters EC similarly to heme, since both markedly induce HO mRNA (more than 20-fold increase) and enzyme activity (more than 5-fold increase). Hydrophilic heme analogues such as iron-protoporphyrin IX-bis-sulfonate and -bis-glycol do not amplify EC cytolysis and do not enhance HO gene expression. Despite efficient entry in EC, HA marginally increases EC ferritin content (74.9±9 vs. 41+11 ng/mg cell protein compared to heme (1517+20 ng/mg cell protein) suggesting a lower level of iron release from the porphyrin ring. HA is only 1β as catalytically active as heme in oxidizing LDL in the presence of H2p2. Ferritin insignificantly increases in EC exposed to HA/H22O2-conditioned LDL while, LDL conditioned with heme/H22O2 significantly induces EC ferritin synthesis (1,9 fold). HA/H22O2-conditioned LDL is significantly (p<.01) less cytotoxic (21.9±6.8%) than heme/H22O2-conditioned LDL (57.6±4,1%). We conclude that HA is not as potent a free radical catalyst as heme. We speculate that HA may not potentiate EC damage or oxidation of lipids in vivo, making it a preferred choice for treatment of AIP compared to heme.
AB - Acute intermittent porphyria (AIP) is a potential fatal disease characterized by decreased synthesis of heme and accumulation of porphyrin precursors. Infusion of hematin has proven efficacious, but with considerable vascular side effects such as thrombosis and DIG; in contrast, Finnish investigators have demonstrated that heme arginate (HA) is both effective and non-vasculotoxic. We have previously shown that heme (hemin chloride) serves as a catalytically active iron source, potentiating the oxidation of LDL and sensitizing endotnelial cells (EC) to oxidant injury. EC respond to heme and oxidant challenge by upregulating the cell cytoprotectants, heme oxygenase (HO) and ferritin. We now provide a mechanism that accounts for the relative safety and efficacy exhibited by HA treatment but not heme in AIP. HA does not amplify EC cytotoxicity mediated by H22O2 while heme pretreatment is markedly sensitizing (5.3+2.3 vs. 52.3±5.3% 5'Cr release respectively). Nevertheless, HA enters EC similarly to heme, since both markedly induce HO mRNA (more than 20-fold increase) and enzyme activity (more than 5-fold increase). Hydrophilic heme analogues such as iron-protoporphyrin IX-bis-sulfonate and -bis-glycol do not amplify EC cytolysis and do not enhance HO gene expression. Despite efficient entry in EC, HA marginally increases EC ferritin content (74.9±9 vs. 41+11 ng/mg cell protein compared to heme (1517+20 ng/mg cell protein) suggesting a lower level of iron release from the porphyrin ring. HA is only 1β as catalytically active as heme in oxidizing LDL in the presence of H2p2. Ferritin insignificantly increases in EC exposed to HA/H22O2-conditioned LDL while, LDL conditioned with heme/H22O2 significantly induces EC ferritin synthesis (1,9 fold). HA/H22O2-conditioned LDL is significantly (p<.01) less cytotoxic (21.9±6.8%) than heme/H22O2-conditioned LDL (57.6±4,1%). We conclude that HA is not as potent a free radical catalyst as heme. We speculate that HA may not potentiate EC damage or oxidation of lipids in vivo, making it a preferred choice for treatment of AIP compared to heme.
UR - http://www.scopus.com/inward/record.url?scp=33749444917&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33749444917&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:33749444917
SN - 1708-8267
VL - 44
SP - 214a
JO - Journal of Investigative Medicine
JF - Journal of Investigative Medicine
IS - 3
ER -