Heat transfer and fluid dynamics measurements in the expansion space of a stirling cycle engine

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. How fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.

Original languageEnglish (US)
Title of host publicationProceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Heat Transfer
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)0791837904, 9780791837900
DOIs
StatePublished - 2006
Event2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Chicago, IL, United States
Duration: Nov 5 2006Nov 10 2006

Publication series

NameAmerican Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD
ISSN (Print)0272-5673

Conference

Conference2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006
Country/TerritoryUnited States
CityChicago, IL
Period11/5/0611/10/06

Fingerprint

Dive into the research topics of 'Heat transfer and fluid dynamics measurements in the expansion space of a stirling cycle engine'. Together they form a unique fingerprint.

Cite this