Heat transfer analysis of a solid-solid heat recuperation system for solar-driven non-stoichiometric redox cycles

Justin Lapp, Jane Davidson, Wojciech Lipiński

Research output: Contribution to conferencePaperpeer-review

2 Scopus citations

Abstract

Heat transfer is analyzed numerically for a solid-solid heat recuperation system employed in a novel directly-irradiated solar thermochemical reactor realizing a metal oxide based non-stoichiometric redox cycle for production of synthesis gas from water and carbon dioxide. The system is designed for continuous operation with heat recuperation from a rotating hollow cylinder of a porous reactive material to a counter rotating inert solid cylinder via radiative transfer. A transient heat transfer model coupling conduction, convection, and radiation heat transfer modes is developed to predict temperatures of both components, rates of heat transfer, and the effectiveness of heat recuperation. Heat recovery effectiveness of over 50% is attained within a parametric study of geometric and material parameters corresponding to the design of a two-step solar thermochemical reactor.

Original languageEnglish (US)
Pages1081-1092
Number of pages12
DOIs
StatePublished - Jan 1 2012
EventASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology - San Diego, CA, United States
Duration: Jul 23 2012Jul 26 2012

Other

OtherASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology
CountryUnited States
CitySan Diego, CA
Period7/23/127/26/12

Fingerprint Dive into the research topics of 'Heat transfer analysis of a solid-solid heat recuperation system for solar-driven non-stoichiometric redox cycles'. Together they form a unique fingerprint.

Cite this