Harmonic functions and mass cancellation

J. R. Baxter

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

If a function on an open set in Rn has the mean value property for one ball at each point of the domain, the function will be said to possess the restricted mean value property. (The ordinary or unrestricted mean value property requires that the mean value property hold for every ball in the domain.) We specify the single ball at each point x by its radius δ (x), a function of x. Under appropriate conditions on δ and the fimction, the restricted mean value property implies that the function is harmonic, giving a converse to the mean value theorem (see references). In the present paper a converse to the mean value theorem is proved, in which the function δ is well behaved, but the function is only required to be normegative. A converse theorem for more general means than averages over balls is also obtained. These results extend theorems of D. Heath, W. Veech, and the author (see references). Some connections are also pointed out between converse mean value theorems and mass cancellation.

Original languageEnglish (US)
Pages (from-to)375-384
Number of pages10
JournalTransactions of the American Mathematical Society
Volume245
DOIs
StatePublished - Nov 1978

Keywords

  • Invariant function. Brownian motion
  • Restricted mean value

Fingerprint

Dive into the research topics of 'Harmonic functions and mass cancellation'. Together they form a unique fingerprint.

Cite this