Guts and volume for hyperbolic 3-orbifolds with underlying space S3

Chris Atkinson, Jessica Mallepalle, Joseph M. Melby, Shawn Rafalski, Jennifer Vaccaro

    Research output: Contribution to journalArticle

    Abstract

    Let O be a hyperbolic 3-orbifold with underlying space the 3-sphere. If O contains an essential 2-suborbifold with underlying space the 2-sphere with four cone points, we show how to compute the guts of O split along the 2-suborbifold. When the guts are non-empty, we obtain volume bounds in terms of the topology of the guts. When the guts are empty, we give a complete description of the topological structure of O.

    Original languageEnglish (US)
    Pages (from-to)100-113
    Number of pages14
    JournalTopology and its Applications
    Volume243
    DOIs
    StatePublished - Jul 1 2018

    Keywords

    • 2-Dimensional suborbifold
    • Essential annuli
    • Guts
    • Haken orbifold
    • Hyperbolic 3-dimensional orbifold
    • Hyperbolic orbifold
    • Hyperbolic volume
    • Incompressible 2-orbifold
    • Orbifold annuli
    • Pared acylindrical orbifold
    • Rational tangle

    Fingerprint Dive into the research topics of 'Guts and volume for hyperbolic 3-orbifolds with underlying space S<sup>3</sup>'. Together they form a unique fingerprint.

  • Cite this

    Atkinson, C., Mallepalle, J., Melby, J. M., Rafalski, S., & Vaccaro, J. (2018). Guts and volume for hyperbolic 3-orbifolds with underlying space S3. Topology and its Applications, 243, 100-113. https://doi.org/10.1016/j.topol.2018.05.004