Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte

Deborah M. Dickey, Daniel L. Dries, Kenneth B. Margulies, Lincoln R. Potter

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Cardiomyocytes release atrial natriuretic peptide (ANP) and B-type natriuretic peptide to stimulate processes that compensate for the failing heart by activating guanylyl cyclase (GC)-A. C-type natriuretic peptide is also elevated in the failing heart and inhibits cardiac remodeling by activating the homologous receptor, GC-B. We previously reported that GC-A is the most active membrane GC in normal mouse ventricles while GC-B is the most active membrane GC in failing ventricles due to increased GC-B and decreased GC-A activities. Here, we examined ANP and CNP-specific GC activity in membranes obtained from non-failing and failing human left ventricles and in membranes from matched cardiomyocyte-enriched pellet preparations. Similar to our findings in the murine study, we found that CNP-dependent GC activity was about half of the ANP-dependent GC activity in the non-failing ventricular and was increased in the failing ventricle. ANP and CNP increased GC activity 9- and 5-fold in non-failing ventricles, respectively. In contrast to the mouse study, in failing human ventricles, ANP-dependent activity was unchanged compared to non-failing values whereas CNP-dependent activity increased 35% (p = 0.005). Compared with ventricular membranes, basal GC activity was reduced an order of magnitude in membranes derived from myocyte-enriched pellets from non-failing ventricles. ANP increased GC activity 2.4-fold but CNP only increased GC activity 1.3-fold. In contrast, neither ANP nor CNP increased GC activity in equivalent preparations from failing ventricles. We conclude that: 1) GC-B activity is increased in non-myocytes from failing human ventricles, possibly as a result of increased fibrosis, 2) human ventricular cardiomyocytes express low levels of GC-A and much lower levels or possibly no GC-B, and 3) GC-A in cardiomyocytes from failing human hearts is refractory to ANP stimulation.

Original languageEnglish (US)
Pages (from-to)727-732
Number of pages6
JournalJournal of Molecular and Cellular Cardiology
Volume52
Issue number3
DOIs
StatePublished - Mar 1 2012

Fingerprint

Guanylate Cyclase
Cardiac Myocytes
Atrial Natriuretic Factor
Membranes
atrial natriuretic factor receptor A
C-Type Natriuretic Peptide
Brain Natriuretic Peptide
Muscle Cells
Heart Ventricles
Fibrosis

Keywords

  • CGMP
  • Carperitide
  • Heart failure
  • Natriuretic peptide
  • Natriuretic peptide receptor A
  • Nesiritide

Cite this

@article{4a6d4bf8f2484b18898ce76c5a299bd7,
title = "Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte",
abstract = "Cardiomyocytes release atrial natriuretic peptide (ANP) and B-type natriuretic peptide to stimulate processes that compensate for the failing heart by activating guanylyl cyclase (GC)-A. C-type natriuretic peptide is also elevated in the failing heart and inhibits cardiac remodeling by activating the homologous receptor, GC-B. We previously reported that GC-A is the most active membrane GC in normal mouse ventricles while GC-B is the most active membrane GC in failing ventricles due to increased GC-B and decreased GC-A activities. Here, we examined ANP and CNP-specific GC activity in membranes obtained from non-failing and failing human left ventricles and in membranes from matched cardiomyocyte-enriched pellet preparations. Similar to our findings in the murine study, we found that CNP-dependent GC activity was about half of the ANP-dependent GC activity in the non-failing ventricular and was increased in the failing ventricle. ANP and CNP increased GC activity 9- and 5-fold in non-failing ventricles, respectively. In contrast to the mouse study, in failing human ventricles, ANP-dependent activity was unchanged compared to non-failing values whereas CNP-dependent activity increased 35{\%} (p = 0.005). Compared with ventricular membranes, basal GC activity was reduced an order of magnitude in membranes derived from myocyte-enriched pellets from non-failing ventricles. ANP increased GC activity 2.4-fold but CNP only increased GC activity 1.3-fold. In contrast, neither ANP nor CNP increased GC activity in equivalent preparations from failing ventricles. We conclude that: 1) GC-B activity is increased in non-myocytes from failing human ventricles, possibly as a result of increased fibrosis, 2) human ventricular cardiomyocytes express low levels of GC-A and much lower levels or possibly no GC-B, and 3) GC-A in cardiomyocytes from failing human hearts is refractory to ANP stimulation.",
keywords = "CGMP, Carperitide, Heart failure, Natriuretic peptide, Natriuretic peptide receptor A, Nesiritide",
author = "Dickey, {Deborah M.} and Dries, {Daniel L.} and Margulies, {Kenneth B.} and Potter, {Lincoln R.}",
year = "2012",
month = "3",
day = "1",
doi = "10.1016/j.yjmcc.2011.11.007",
language = "English (US)",
volume = "52",
pages = "727--732",
journal = "Journal of Molecular and Cellular Cardiology",
issn = "0022-2828",
publisher = "Academic Press Inc.",
number = "3",

}

TY - JOUR

T1 - Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts

T2 - GC-A is inactive in the failed cardiomyocyte

AU - Dickey, Deborah M.

AU - Dries, Daniel L.

AU - Margulies, Kenneth B.

AU - Potter, Lincoln R.

PY - 2012/3/1

Y1 - 2012/3/1

N2 - Cardiomyocytes release atrial natriuretic peptide (ANP) and B-type natriuretic peptide to stimulate processes that compensate for the failing heart by activating guanylyl cyclase (GC)-A. C-type natriuretic peptide is also elevated in the failing heart and inhibits cardiac remodeling by activating the homologous receptor, GC-B. We previously reported that GC-A is the most active membrane GC in normal mouse ventricles while GC-B is the most active membrane GC in failing ventricles due to increased GC-B and decreased GC-A activities. Here, we examined ANP and CNP-specific GC activity in membranes obtained from non-failing and failing human left ventricles and in membranes from matched cardiomyocyte-enriched pellet preparations. Similar to our findings in the murine study, we found that CNP-dependent GC activity was about half of the ANP-dependent GC activity in the non-failing ventricular and was increased in the failing ventricle. ANP and CNP increased GC activity 9- and 5-fold in non-failing ventricles, respectively. In contrast to the mouse study, in failing human ventricles, ANP-dependent activity was unchanged compared to non-failing values whereas CNP-dependent activity increased 35% (p = 0.005). Compared with ventricular membranes, basal GC activity was reduced an order of magnitude in membranes derived from myocyte-enriched pellets from non-failing ventricles. ANP increased GC activity 2.4-fold but CNP only increased GC activity 1.3-fold. In contrast, neither ANP nor CNP increased GC activity in equivalent preparations from failing ventricles. We conclude that: 1) GC-B activity is increased in non-myocytes from failing human ventricles, possibly as a result of increased fibrosis, 2) human ventricular cardiomyocytes express low levels of GC-A and much lower levels or possibly no GC-B, and 3) GC-A in cardiomyocytes from failing human hearts is refractory to ANP stimulation.

AB - Cardiomyocytes release atrial natriuretic peptide (ANP) and B-type natriuretic peptide to stimulate processes that compensate for the failing heart by activating guanylyl cyclase (GC)-A. C-type natriuretic peptide is also elevated in the failing heart and inhibits cardiac remodeling by activating the homologous receptor, GC-B. We previously reported that GC-A is the most active membrane GC in normal mouse ventricles while GC-B is the most active membrane GC in failing ventricles due to increased GC-B and decreased GC-A activities. Here, we examined ANP and CNP-specific GC activity in membranes obtained from non-failing and failing human left ventricles and in membranes from matched cardiomyocyte-enriched pellet preparations. Similar to our findings in the murine study, we found that CNP-dependent GC activity was about half of the ANP-dependent GC activity in the non-failing ventricular and was increased in the failing ventricle. ANP and CNP increased GC activity 9- and 5-fold in non-failing ventricles, respectively. In contrast to the mouse study, in failing human ventricles, ANP-dependent activity was unchanged compared to non-failing values whereas CNP-dependent activity increased 35% (p = 0.005). Compared with ventricular membranes, basal GC activity was reduced an order of magnitude in membranes derived from myocyte-enriched pellets from non-failing ventricles. ANP increased GC activity 2.4-fold but CNP only increased GC activity 1.3-fold. In contrast, neither ANP nor CNP increased GC activity in equivalent preparations from failing ventricles. We conclude that: 1) GC-B activity is increased in non-myocytes from failing human ventricles, possibly as a result of increased fibrosis, 2) human ventricular cardiomyocytes express low levels of GC-A and much lower levels or possibly no GC-B, and 3) GC-A in cardiomyocytes from failing human hearts is refractory to ANP stimulation.

KW - CGMP

KW - Carperitide

KW - Heart failure

KW - Natriuretic peptide

KW - Natriuretic peptide receptor A

KW - Nesiritide

UR - http://www.scopus.com/inward/record.url?scp=84857640016&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84857640016&partnerID=8YFLogxK

U2 - 10.1016/j.yjmcc.2011.11.007

DO - 10.1016/j.yjmcc.2011.11.007

M3 - Article

C2 - 22133375

AN - SCOPUS:84857640016

VL - 52

SP - 727

EP - 732

JO - Journal of Molecular and Cellular Cardiology

JF - Journal of Molecular and Cellular Cardiology

SN - 0022-2828

IS - 3

ER -