Growth of subcontinental lithosphere: Evidence from repeated dike injections in the Balmuccia lherzolite massif, Italian Alps: Developments in Geotectonics

S.B. Mukasa, J.W. Shervais

Research output: Book/ReportBook


The Balmuccia alpine lherzolite massif is a fragment of subcontinental lithospheric mantle emplaced into the lower crust 251 Ma ago during the final, extensional phase of the Hercynian orogeny. The Balmuccia massif consists largely of lherzolite, with subordinate harzburgite and dunite, and an array of dike rocks formed in the mantle before crustal emplacement. Dike rocks include websterite and bronzitite of the Cr-diopside suite, spinel clinopyroxenite and spinel-poor websterite of the Al-augite suite, gabbro and gabbronorite of the late gabbro suite, and hornblendite of the hydrous vein suite. The dike rocks display consistent intrusive relationships with one another, such that Cr-diopside suite dikes are always older than dikes and veins of the Al-augite suite, followed by dikes of the late gabbro suite and veins of the hydrous vein suite. Phlogopite (phl) veinlets that formed during interaction with the adjacent crust are the youngest event. There are at least three generations of Cr-diopside suite dikes, as shown by crosscutting relations. Dikes of the Al-augite suite form a polybaric fractionation series from spinel clinopyroxenite to websterite and feldspathic websterite, which crystallized from aluminous alkaline magmas at relatively high pressures. The late gabbro suite of dikes intruded at lower pressures, where plagioclase saturation occurred before significant mafic phase fractionation. Hornblendite veins have distinct compositional and isotopic characteristics, which show that they are not related to either the Al-augite suite or to the late gabbro dike suite. Cr-diopside suite dikes have Nd and Sr isotopic compositions similar to those of the host lherzolite and within the range of compositions defined by ocean-island basalts. The Al-augite dikes and the hornblendite veins have Sr and Nd isotopic compositions similar to those of Cr-diopside suite lherzolite and websterite. The late gabbro dikes have Nd and Sr isotopic compositions similar to mid-ocean ridge basalt (MORB) asthenosphere. Lead isotopic compositions for all of the samples fall in the present-day MORB field on the 208Pb/204Pb vs. 206Pb/204Pb dia gram but are displaced above this field on the 207Pb/204Pb vs. 206Pb/204Pb diagram. There is overlap in the data between the Cr-diopside suite and the Al-augite and hydrous vein suites, with the exception that the Cr-diopside websterite dikes have more radiogenic Pb than any of the other samples. In Pb-Pb space as well, the late gabbro suite has the least radiogenic isotopic compositions, reflecting a change in magma source region during uplift. These data show that tectonic thinning of subcontinental lithospheric mantle during extension caused a change in the source regions of mantle-derived magmas from an ocean island basalt (OIB)-like lithosphere to the underlying MORB asthenosphere. They also demonstrate that the upper mantle acquires its heterogeneous isotopic character through several different processes, including in situ radiogenic growth, addition of asthenospheric melts, dike-wall rock ionic exchange, redistribution of the lithospheric dike and vein materials by melting, and in the late stages of emplacement, assimilation of crustal materials. © 1999 Elsevier Science B.V. All rights reserved.
Original languageEnglish (US)
Number of pages30
StatePublished - 1999

Bibliographical note

Export Date: 3 November 2016


  • Balmuccia lherzolite massif
  • Dike rocks
  • Subcontinental lithosphere


Dive into the research topics of 'Growth of subcontinental lithosphere: Evidence from repeated dike injections in the Balmuccia lherzolite massif, Italian Alps: Developments in Geotectonics'. Together they form a unique fingerprint.

Cite this