Growth control in the Drosophila wing disk

Research output: Contribution to journalReview article

1 Scopus citations

Abstract

The regulation of size and shape is a fundamental requirement of biological development and has been a subject of scientific study for centuries, but we still lack an understanding of how organisms know when to stop growing. Imaginal wing disks of the fruit fly Drosophila melanogaster, which are precursors of the adult wings, are an archetypal tissue for studying growth control. The growth of the disks is dependent on many inter- and intra-organ factors such as morphogens, mechanical forces, nutrient levels, and hormones that influence gene expression and cell growth. Extracellular signals are transduced into gene-control signals via complex signal transduction networks, and since cells typically receive many different signals, a mechanism for integrating the signals is needed. Our understanding of the effect of morphogens on tissue-level growth regulation via individual pathways has increased significantly in the last half century, but our understanding of how multiple biochemical and mechanical signals are integrated to determine whether or not a cell decides to divide is still rudimentary. Numerous fundamental questions are involved in understanding the decision-making process, and here we review the major biochemical and mechanical pathways involved in disk development with a view toward providing a basis for beginning to understand how multiple signals can be integrated at the cell level, and how this translates into growth control at the level of the imaginal disk. This article is categorized under:. Analytical and Computational Methods > Computational Methods. Biological Mechanisms > Cell Signaling. Models of Systems Properties and Processes > Cellular Models.

Original languageEnglish (US)
Article numbere1478
JournalWiley Interdisciplinary Reviews: Systems Biology and Medicine
Volume12
Issue number3
DOIs
StatePublished - May 1 2020

Keywords

  • Drosophila wing disk
  • mechanical control
  • mechanotransduction
  • organ development
  • signal integration
  • signaling pathways

PubMed: MeSH publication types

  • Journal Article
  • Review
  • Research Support, N.I.H., Extramural

Fingerprint Dive into the research topics of 'Growth control in the Drosophila wing disk'. Together they form a unique fingerprint.

  • Cite this