TY - JOUR
T1 - Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults
AU - Broxmeyer, Hal E.
AU - Hangoc, Giao
AU - Cooper, Scott
AU - Ribeiro, Raul C.
AU - Graves, Vicki
AU - Yoder, Mervin
AU - Wagner, John
AU - Vadhan-Raj, Saroj
AU - Benninger, Lisa
AU - Rubinstein, Pablo
AU - Broun, E. Randolph
PY - 1992
Y1 - 1992
N2 - We estimated whether single collections of cord blood contained sufficient cells for hematopoietic engraftment of adults by evaluating numbers of cord blood and adult bone marrow myeloid progenitor cells (MPCs) as detected in vitro with steel factor (SLF) and hematopoietic colonystimulating factors (CSFs). SLF plus granulocyte-macrophage (GM)-CSF detected 8- to 11-fold more cord blood GM progenitors [colony-forming units (CFU)-GM] than cells stimulated with GM-CSF or 5637 conditioned medium (CM), growth factors previously used to estimate cord blood CFU-GM numbers. SLF plus erythropoietin (Epo) plus interleukin 3 (IL-3) enhanced detection of cord blood multipotential (CFU-GEMM) progenitors 15-fold compared to stimulation with Epo plus IL-3. Under the same conditions, bone marrow CFU-GM and CFU-GEMM were only enhanced in detection 2- to 4- and 6- to 8-fold. Increased detection of cord blood CFU-GEMM correlated directly with decreased detection of cord blood erythroid burst-forming units (BFU-E). In contrast, adult bone marrow CFU-GEMM and BFU-E numbers were both enhanced by SLF plus Epo plus IL-3. This suggests that most cord blood BFU-E may actually be CFU-GEMM. Cord blood collections (n = 17) contained numbers of MPCs (especially CFU-GM) similar to the number found in nine autologous bone marrow collections. To assess additional sources of MPCs, the peripheral blood of 1-day-old infants was assessed. However, average concentrations of MPCs circulating in these infants were only 30-46% that in their cord blood. Expansion of cord blood MPCs was also evaluated. Incubation of cord blood cells for 7 days with SLF resulted in 7.9-, 2.2-, and 2.7-fold increases in numbers of CFU-GM, BFU-E, and CFU-GEMM compared to starting numbers; addition of a CSF with SLF resulted in even greater expansion of MPCs. The results suggest that cord blood contains a larger number of early profile MPCs than previously recognized and that there are probably sufficient numbers of cells in a single cord blood collection to engraft an adult. Although the expansion data must be considered with caution, as human marrow repopulating cells cannot be assessed directly, in vitro expansion of cord blood stem and progenitor cells may be feasible for clinical transplantation.
AB - We estimated whether single collections of cord blood contained sufficient cells for hematopoietic engraftment of adults by evaluating numbers of cord blood and adult bone marrow myeloid progenitor cells (MPCs) as detected in vitro with steel factor (SLF) and hematopoietic colonystimulating factors (CSFs). SLF plus granulocyte-macrophage (GM)-CSF detected 8- to 11-fold more cord blood GM progenitors [colony-forming units (CFU)-GM] than cells stimulated with GM-CSF or 5637 conditioned medium (CM), growth factors previously used to estimate cord blood CFU-GM numbers. SLF plus erythropoietin (Epo) plus interleukin 3 (IL-3) enhanced detection of cord blood multipotential (CFU-GEMM) progenitors 15-fold compared to stimulation with Epo plus IL-3. Under the same conditions, bone marrow CFU-GM and CFU-GEMM were only enhanced in detection 2- to 4- and 6- to 8-fold. Increased detection of cord blood CFU-GEMM correlated directly with decreased detection of cord blood erythroid burst-forming units (BFU-E). In contrast, adult bone marrow CFU-GEMM and BFU-E numbers were both enhanced by SLF plus Epo plus IL-3. This suggests that most cord blood BFU-E may actually be CFU-GEMM. Cord blood collections (n = 17) contained numbers of MPCs (especially CFU-GM) similar to the number found in nine autologous bone marrow collections. To assess additional sources of MPCs, the peripheral blood of 1-day-old infants was assessed. However, average concentrations of MPCs circulating in these infants were only 30-46% that in their cord blood. Expansion of cord blood MPCs was also evaluated. Incubation of cord blood cells for 7 days with SLF resulted in 7.9-, 2.2-, and 2.7-fold increases in numbers of CFU-GM, BFU-E, and CFU-GEMM compared to starting numbers; addition of a CSF with SLF resulted in even greater expansion of MPCs. The results suggest that cord blood contains a larger number of early profile MPCs than previously recognized and that there are probably sufficient numbers of cells in a single cord blood collection to engraft an adult. Although the expansion data must be considered with caution, as human marrow repopulating cells cannot be assessed directly, in vitro expansion of cord blood stem and progenitor cells may be feasible for clinical transplantation.
UR - http://www.scopus.com/inward/record.url?scp=0026506022&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026506022&partnerID=8YFLogxK
M3 - Article
C2 - 1373894
AN - SCOPUS:0026506022
SN - 0027-8424
VL - 89
SP - 4109
EP - 4113
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 9
ER -