TY - JOUR
T1 - Group cohomology of the universal ordinary distribution
AU - Ouyang, Yi
AU - Anderson, Greg W.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2001
Y1 - 2001
N2 - For any odd squarefree integer r, we obtain a complete description of the Gr = Gal(ℚ(μr)/ℚ) group cohomology of the universal ordinary distribution Ur in this paper. Moreover, for M a fixed integer dividing ℓ - 1 for all prime factors ℓ of r, we study the cohomology group H*(Gr, Ur/MUr). In particular, we explain the construction of the elements κr′ for r′|r in Rubin [9], which come exactly from a certain ℤ/Mℤ-basis of the cohomology group H0(Gr, Ur/MUr) through an evaluation map.
AB - For any odd squarefree integer r, we obtain a complete description of the Gr = Gal(ℚ(μr)/ℚ) group cohomology of the universal ordinary distribution Ur in this paper. Moreover, for M a fixed integer dividing ℓ - 1 for all prime factors ℓ of r, we study the cohomology group H*(Gr, Ur/MUr). In particular, we explain the construction of the elements κr′ for r′|r in Rubin [9], which come exactly from a certain ℤ/Mℤ-basis of the cohomology group H0(Gr, Ur/MUr) through an evaluation map.
UR - http://www.scopus.com/inward/record.url?scp=0035538629&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035538629&partnerID=8YFLogxK
U2 - 10.1515/crll.2001.057
DO - 10.1515/crll.2001.057
M3 - Article
AN - SCOPUS:0035538629
SN - 0075-4102
VL - 537
SP - 1
EP - 32
JO - Journal fur die Reine und Angewandte Mathematik
JF - Journal fur die Reine und Angewandte Mathematik
ER -