Ground test studies of the HIFiRE-1 transition experiment Part 2: Computational analysis

Matthew MacLean, Timothy Wadhams, Michael Holden, Heath Johnson

Research output: Contribution to journalArticlepeer-review

69 Scopus citations

Abstract

Comparisons to measurements made in the Calspan-University at Buffalo Research Center LENS I facility on a full-scale HIFiRE-1 vehicle at duplicated flight conditions have been made with the computational fluid dynamics code DPLR and the parabolized stability equation code STABL. These comparisons include laminar heating, transition onset, turbulent heating, and turbulent flare separation for the test article at 0 deg angle of attack. Predictions of transition onset with the parabolized stability equation algorithm correlate to an average N factor of 5.7 with a standard deviation of 0.75 and show the proper trend with regard to entropy-layer and boundary-layer effects. Extrapolating the parabolized stability equation solutions to the most likely flight environment will lead to a delay in onset of approximately 20 cm on the forebody. On the turbulent forebody, heating predictions compared with ground test measurements have shown that Reynolds average Navier-Stokes turbulence models can overpredict the measurements by up to 30%, and initial investigations suggest that this discrepancy may be linked to total-to-wall-temperature ratio. In the interaction region, the most popular Reynolds average Navier-Stokes models in their nominal form fail to capture the necessary features of the flowfield; however, proper limiting of the Reynolds stress tensor can accurately predict the size of the separated region and provide sufficiently good agreement for a design level calculation.

Original languageEnglish (US)
Pages (from-to)1149-1164
Number of pages16
JournalJournal of Spacecraft and Rockets
Volume45
Issue number6
DOIs
StatePublished - 2008

Fingerprint Dive into the research topics of 'Ground test studies of the HIFiRE-1 transition experiment Part 2: Computational analysis'. Together they form a unique fingerprint.

Cite this