Gravity dual and CERN LHC study of single-sector supersymmetry breaking

Maxime Gabella, Tony Gherghetta, Joel Giedt

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


We propose a gravitational dual of "single-sector" models of supersymmetry breaking which contain no messenger sector and naturally explain the scale of supersymmetry breaking and the fermion mass hierarchy. In five dimensions these models can be given a simple interpretation. Inspired by flux-background solutions of type IIB supergravity, a metric background that deviates from AdS5 in the IR breaks supersymmetry, while the fermion mass hierarchy results from the wave function overlap of bulk fermions with a UV-confined Higgs field. The first and second generation squarks and sleptons, which are localized near the IR brane, directly feel the supersymmetry breaking and obtain masses of order 10 TeV. These are interpreted as composite states of the dual 4D theory. The gauginos and third generation squarks and sleptons are elementary states that obtain soft masses of order 1 TeV at the loop level via direct gauge mediation. This particle spectrum leads to distinctive signatures at the LHC, similar to the usual gauge mediation with a neutralino NLSP that decays promptly to a gravitino LSP, but with lower event rates. Nevertheless we show that with 1-10fb-1 of LHC data "single-sector" models can easily be detected above background and distinguished from conventional gravity and gauge mediation.

Original languageEnglish (US)
Article number055001
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Issue number5
StatePublished - Sep 7 2007


Dive into the research topics of 'Gravity dual and CERN LHC study of single-sector supersymmetry breaking'. Together they form a unique fingerprint.

Cite this