Abstract
To meet the rising performance and efficiency demands on high performance thermal management systems, this paper proposes a hierarchical model-based control framework for thermal-fluid power flow systems. This hierarchy uses scalable graph-based dynamic models of the hydrodynamics and thermodynamics of these systems, derived from conservation of mass and conservation of thermal energy, respectively. Leveraging the inherent timescale separation between thermal and hydraulic dynamics, a three-layer control hierarchy is constructed. The use of Model Predictive Control (MPC) at each layer allows actuator and state constraints to be explicitly considered and allows preview of upcoming thermal disturbances to be used for optimization. In addition, the hierarchy has functionality to account for actuator dynamics, including rate limits and time delays. The proposed control approach is demonstrated in simulation on a system configuration that is notionally representative of a simplified aircraft fuel thermal management system.
Original language | English (US) |
---|---|
Title of host publication | 2017 American Control Conference, ACC 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2099-2105 |
Number of pages | 7 |
ISBN (Electronic) | 9781509059928 |
DOIs | |
State | Published - Jun 29 2017 |
Externally published | Yes |
Event | 2017 American Control Conference, ACC 2017 - Seattle, United States Duration: May 24 2017 → May 26 2017 |
Publication series
Name | Proceedings of the American Control Conference |
---|---|
ISSN (Print) | 0743-1619 |
Other
Other | 2017 American Control Conference, ACC 2017 |
---|---|
Country/Territory | United States |
City | Seattle |
Period | 5/24/17 → 5/26/17 |
Bibliographical note
Publisher Copyright:© 2017 American Automatic Control Council (AACC).