Abstract
This letter considers an M-ary hypothesis testing problem on an n-dimensional random vector perturbed by the addition of Gaussian noise. A novel expression for the gradient of the error probability, with respect to the covariance matrix of the noise, is derived and shown to be a function of the cross-covariance matrix between the noise matrix (i.e., the matrix obtained by multiplying the noise vector by its transpose) and Bernoulli random variables associated with the correctness event.
Original language | English (US) |
---|---|
Article number | 9226081 |
Pages (from-to) | 1909-1913 |
Number of pages | 5 |
Journal | IEEE Signal Processing Letters |
Volume | 27 |
DOIs | |
State | Published - 2020 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
Keywords
- Error probability
- Gradient
- Hypothesis testing
- Multivariate Gaussian noise