Abstract
Electrical properties tomography (EPT) holds promise for noninvasively mapping at high spatial resolution the electrical conductivity and permittivity of biological tissues in vivo using a magnetic resonance imaging (MRI) scanner. In the present study, we have developed a novel gradient-based EPT approach with greatly improved tissue boundary reconstruction and largely elevated robustness against measurement noise compared to existing techniques. Using a 7 Tesla MRI system, we report, for the first time, high-quality in vivo human brain electrical property images with refined structural details, which can potentially merit clinical diagnosis (such as cancer detection) and high-field MRI applications (quantification of local specific absorption rate) in the future.
Original language | English (US) |
---|---|
Pages (from-to) | 6056-6059 |
Number of pages | 4 |
Journal | Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference |
Volume | 2014 |
DOIs | |
State | Published - 2014 |
Event | 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States Duration: Aug 26 2014 → Aug 30 2014 |