TY - JOUR
T1 - Good-enough brain model
T2 - Challenges, algorithms, and discoveries in multisubject experiments
AU - Papalexakis, Evangelos E.
AU - Fyshe, Alona
AU - Sidiropoulos, Nicholas D.
AU - Talukdar, Partha Pratim
AU - Mitchell, Tom M.
AU - Faloutsos, Christos
N1 - Publisher Copyright:
© Mary Ann Liebert, Inc. 2014.
PY - 2014/12
Y1 - 2014/12
N2 - Given a simple noun such as apple, and a question such as "Is it edible?," what processes take place in the human brain? More specifically, given the stimulus, what are the interactions between (groups of) neurons (also known as functional connectivity) and how can we automatically infer those interactions, given measurements of the brain activity? Furthermore, how does this connectivity differ across different human subjects? In this work, we show that this problem, even though originating from the field of neuroscience, can benefit from big data techniques; we present a simple, novel good-enough brain model, or GeBM in short, and a novel algorithm Sparse-SysId, which are able to effectively model the dynamics of the neuron interactions and infer the functional connectivity. Moreover, GeBM is able to simulate basic psychological phenomena such as habituation and priming (whose definition we provide in the main text). We evaluate GeBM by using real brain data. GeBM produces brain activity patterns that are strikingly similar to the real ones, where the inferred functional connectivity is able to provide neuroscientific insights toward a better understanding of the way that neurons interact with each other, as well as detect regularities and outliers in multisubject brain activity measurements.
AB - Given a simple noun such as apple, and a question such as "Is it edible?," what processes take place in the human brain? More specifically, given the stimulus, what are the interactions between (groups of) neurons (also known as functional connectivity) and how can we automatically infer those interactions, given measurements of the brain activity? Furthermore, how does this connectivity differ across different human subjects? In this work, we show that this problem, even though originating from the field of neuroscience, can benefit from big data techniques; we present a simple, novel good-enough brain model, or GeBM in short, and a novel algorithm Sparse-SysId, which are able to effectively model the dynamics of the neuron interactions and infer the functional connectivity. Moreover, GeBM is able to simulate basic psychological phenomena such as habituation and priming (whose definition we provide in the main text). We evaluate GeBM by using real brain data. GeBM produces brain activity patterns that are strikingly similar to the real ones, where the inferred functional connectivity is able to provide neuroscientific insights toward a better understanding of the way that neurons interact with each other, as well as detect regularities and outliers in multisubject brain activity measurements.
UR - http://www.scopus.com/inward/record.url?scp=84991809186&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84991809186&partnerID=8YFLogxK
U2 - 10.1089/big.2014.0044
DO - 10.1089/big.2014.0044
M3 - Article
AN - SCOPUS:84991809186
SN - 2167-6461
VL - 2
SP - 216
EP - 229
JO - Big Data
JF - Big Data
IS - 4
ER -