TY - JOUR
T1 - Glycogenesis from glucose and ureagenesis in isolated perfused rat livers
T2 - Influence of ammonium ion, norvaline, and ethoxyzolamide
AU - Bode, Ann M.
AU - Foster, James D.
AU - Nordlie, Robert C.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1994/3/18
Y1 - 1994/3/18
N2 - The probable involvement of hepatic carbamyl-P in the reciprocal relationship between hepatic ureagenesis and glycogenesis from glucose was explored. Isolated perfused liver preparations from 48-h fasted rats were employed. Moderate (9.2 mM) and relatively high levels of glucose (34 mM) were perfused. Hepatic glycogenesis, glucose-6-P, carbamyl-P, and citrulline levels, hepatic urea formation, and ureagenesis based upon perfusate urea levels were measured. Experimental probes selected to modify hepatic ureagenesis and carbamyl-P production and utilization included: (a) NH4Cl, maintained at 5 mM by continuous infusion (NH4+ is a substrate for carbamyl-P synthase I and glutamate dehydrogenase); (b) norvaline, an inhibitor of ornithine transcarbamylase which catalyzes the first committed step in the urea cycle; and (e) ethoxyzolamide, an inhibitor of carbonic anhydrase which produces HCO3-, an essential substrate for carbamyl-P synthase I. NH4+ increased ureagenesis and decreased glycogenesis. The inclusion of norvaline with NH4+ decreased ureagenesis and increased glycogenesis. Ethoxyzolamide with or without NH4+ inhibited both ureagenesis and glycogenesis, and decreased the hepatic glucose-6-P level. Glycogenesis was greater at 34 mM than 9.2 mM glucose, increased in norvaline-containing preparations correlative with increased availability of carbamyl-P, and decreased when carbamyl-P formation was inhibited by ethoxyzolamide. Kinetic analysis indicated a Km, Glc of 31 mM for glucose phosphorylation preliminary to glycogenesis. Glycogen formation via the "indirect pathway" (i.e. involving extrahepatic glycolysis, transport of lactate to the liver, and glyconeogenesis therefrom) was quantitatively insufficient to account for the observed glycogenesis. Glucokinase is contraindicated by the inverse relationship between hepatic glycogenesis and ATP availability in the ethoxyzolamide-treated preparations. In contrast, carbamyl-P:glucose phosphotransferase activity of the glucose-6-phosphatase system has the characteristics to bridge hepatic ureagenesis and glycogenesis.
AB - The probable involvement of hepatic carbamyl-P in the reciprocal relationship between hepatic ureagenesis and glycogenesis from glucose was explored. Isolated perfused liver preparations from 48-h fasted rats were employed. Moderate (9.2 mM) and relatively high levels of glucose (34 mM) were perfused. Hepatic glycogenesis, glucose-6-P, carbamyl-P, and citrulline levels, hepatic urea formation, and ureagenesis based upon perfusate urea levels were measured. Experimental probes selected to modify hepatic ureagenesis and carbamyl-P production and utilization included: (a) NH4Cl, maintained at 5 mM by continuous infusion (NH4+ is a substrate for carbamyl-P synthase I and glutamate dehydrogenase); (b) norvaline, an inhibitor of ornithine transcarbamylase which catalyzes the first committed step in the urea cycle; and (e) ethoxyzolamide, an inhibitor of carbonic anhydrase which produces HCO3-, an essential substrate for carbamyl-P synthase I. NH4+ increased ureagenesis and decreased glycogenesis. The inclusion of norvaline with NH4+ decreased ureagenesis and increased glycogenesis. Ethoxyzolamide with or without NH4+ inhibited both ureagenesis and glycogenesis, and decreased the hepatic glucose-6-P level. Glycogenesis was greater at 34 mM than 9.2 mM glucose, increased in norvaline-containing preparations correlative with increased availability of carbamyl-P, and decreased when carbamyl-P formation was inhibited by ethoxyzolamide. Kinetic analysis indicated a Km, Glc of 31 mM for glucose phosphorylation preliminary to glycogenesis. Glycogen formation via the "indirect pathway" (i.e. involving extrahepatic glycolysis, transport of lactate to the liver, and glyconeogenesis therefrom) was quantitatively insufficient to account for the observed glycogenesis. Glucokinase is contraindicated by the inverse relationship between hepatic glycogenesis and ATP availability in the ethoxyzolamide-treated preparations. In contrast, carbamyl-P:glucose phosphotransferase activity of the glucose-6-phosphatase system has the characteristics to bridge hepatic ureagenesis and glycogenesis.
UR - http://www.scopus.com/inward/record.url?scp=0028309536&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028309536&partnerID=8YFLogxK
M3 - Article
C2 - 8132505
AN - SCOPUS:0028309536
SN - 0021-9258
VL - 269
SP - 7879
EP - 7886
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 11
ER -