Glycemic Control and Clinical Outcomes in U.S. Patients With COVID-19: Data From the National COVID Cohort Collaborative (N3C) Database

Rachel Wong, Margaret Hall, Rohith Vaddavalli, Adit Anand, Neha Arora, Carolyn T. Bramante, Victor Garcia, Steven Johnson, Mary Saltz, Jena S. Tronieri, Yun Jae Yoo, John B. Buse, Joel Saltz, Joshua Miller, Richard Moffitt

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

OBJECTIVE The purpose of the study is to evaluate the relationship between HbA1c and severity of coronavirus disease 2019 (COVID-19) outcomes in patients with type 2 diabetes (T2D) with acute COVID-19 infection. RESEARCH DESIGN AND METHODS We conducted a retrospective study using observational data from the National COVID Cohort Collaborative (N3C), a longitudinal, multicenter U.S. cohort of patients with COVID-19 infection. Patients were ≥18 years old with T2D and confirmed COVID-19 infection by laboratory testing or diagnosis code. The primary outcome was 30-day mortality following the date of COVID-19 diagnosis. Secondary outcomes included need for invasive ventilation or extracorporeal membrane oxygenation (ECMO), hospitalization within 7 days before or 30 days after COVID-19 diagnosis, and length of stay (LOS) for patients who were hospitalized. RESULTS The study included 39,616 patients (50.9% female, 55.4% White, 26.4% Black or African American, and 16.1% Hispanic or Latino, with mean ± SD age 62.1 ± 13.9 years and mean ± SD HbA1c 7.6% ± 2.0). There was an increasing risk of hospitalization with incrementally higher HbA1c levels, but risk of death plateaued at HbA1c >8%, and risk of invasive ventilation or ECMO plateaued 9%. There was no significant difference in LOS across HbA1c levels. CONCLUSIONS In a large, multicenter cohort of patients in the U.S. with T2D and COVID-19 infection, risk of hospitalization increased with incrementally higher HbA1c levels. Risk of death and invasive ventilation also increased but plateaued at different levels of glycemic control.

Original languageEnglish (US)
Pages (from-to)1099-1106
Number of pages8
JournalDiabetes care
Volume45
Issue number5
DOIs
StatePublished - May 2022

Bibliographical note

Funding Information:
Acknowledgments. The authors thank con tributions from the following: N3C Publication Committee, Data Access Committee, Download Request Committee, and N3C Diabetes and Obesity Domain Team. Funding. This work was supported by National Institutes of Health, National Center for Advancing Translational Sciences grant U24TR002306 and UL1TR002489 and by National Institute of Diabetes and Digestive and Kidney Diseases grant DK12654-01A1 to C.T.B. N3C Attribution. The analyses described in this publication were conducted with data or tools accessed through the National Center for Advancing Translational Sciences (NCATS) N3C Data Enclave (covid.cd2h.org/enclave) and supported by NCATS U24 TR002306. Additional support was received from the National Institute of General Medical Sciences 5U54GM104942-04. This research was possible because of the patients whose information is included within the data from participating organizations (covid.cd2h.org/dtas) and the organizations and scientists (covid.cd2h.org/duas) who have contributed to the on-going development of this community resource (https://doi.org/10.1093/jamia/ ocaa196). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Authorship was determined using International Committee of Medical Journal Editors recommendations. Data Partners With Released Data. Stony Brook University—U24TR002306; University of Oklahoma Health Sciences Center—U54GM 104938: Oklahoma Clinical and Translational Science Institute (OCTSI); West Virginia University— U54GM104942: West Virginia Clinical and Translational Science Institute (WVCTSI); University of Mississippi Medical Center—U54GM115428: Mississippi Center for Clinical and Translational Research (CCTR); University of Nebraska Medical Center—U54GM115458: Great Plains IDeA-Clinical & Translational Research; Maine Medical Center—U54GM115516: Northern New England Clinical & Translational Research (NNE-CTR) Network; Wake Forest University Health Sciences— UL1TR001420: Wake Forest Clinical and Translational Science Institute; Northwestern University at Chicago—UL1TR001422: Northwestern University Clinical and Translational Science Institute (NUCATS); University of Cincinnati—UL1TR001425: Center for Clinical and Translational Science and Training; The University of Texas Medical Branch at Galveston—UL1TR001439: The Institute for Translational Sciences; Medical University of South Carolina—UL1TR001450: South Carolina Clinical & Translational Research Institute (SCTR); University of Massachusetts Medical School Worcester— UL1TR001453: The UMass Center for Clinical and Translational Science (UMCCTS); University of Southern California—UL1TR001855: The Southern California Clinical and Translational Science Institute (SC CTSI); Columbia University Irving Medical Center—UL1TR001873: Irving Institute for Clinical and Translational Research; George Washington Children's Research Institute—UL1TR001876: Clinical and Translational Science Institute at Children's National (CTSA-CN); University of Kentucky—UL1TR001998: UK Center for Clinical and Translational Science; University of Rochester—UL1TR002001: UR Clinical & Translational Science Institute; University of Illinois at Chicago—UL1TR002003: UIC Center for Clinical and Translational Science; Penn State Health Milton S. Hershey Medical Center—UL1TR002014: Penn State Clinical and Translational Science Institute; The University of Michigan at Ann Arbor—UL1TR002240: Michigan Institute for Clinical and Health Research; Vanderbilt University Medical Center—UL1TR002243: Vanderbilt Institute for Clinical and Translational Research; University of Washington—UL1TR002319: Institute of Translational Health Sciences; Washington University in St. Louis—UL1TR002345: Institute of Clinical and Translational Sciences; Oregon Health & Science University— UL1TR002369: Oregon Clinical and Translational Research Institute; University of Wisconsin-Madison—UL1TR002373: UW Institute for Clinical and Translational Research; Rush University Medical Center—UL1TR002389: The Institute for Translational Medicine (ITM); The University of Chicago—UL1TR002389: The Institute for Translational Medicine (ITM); University of North Carolina at Chapel Hill—UL1TR002489: North Carolina Translational and Clinical Science Institute; University of Minnesota—UL1TR002494: Clinical and Translational Science Institute; Children's Hospital Colorado—UL1TR002535: Colorado Clinical and Translational Sciences Institute; The University of Iowa—UL1TR002537: Institute for Clinical and Translational Science; The University of Utah—UL1TR002538: UHealth Center for Clinical and Translational Science; Tufts Medical Center—UL1TR002544: Tufts Clinical and Translational Science Institute; Duke University— UL1TR002553: Duke Clinical and Translational Science Institute; Virginia Commonwealth University—UL1TR002649: C. Kenneth and Dianne Wright Center for Clinical and Translational Research; The Ohio State University— UL1TR002733: Center for Clinical and Translational Science; The University of Miami Leonard M. Miller School of Medicine— UL1TR002736: University of Miami Clinical and Translational Science Institute; University of Virginia—UL1TR003015: iTHRIV Integrated Translational Health Research Institute of Virginia; Carilion Clinic—UL1TR003015: iTHRIV Integrated Translational Health Research Institute of Virginia; University of Alabama at Birmingham—UL1TR003096: Center for Clinical and Translational Science; Johns Hopkins University—UL1TR003098: Johns Hopkins Institute for Clinical and Translational Research; University of Arkansas for Medical Sciences—UL1TR003107: UAMS Translational Research Institute; Nemours—U54GM104941: Delaware Accelerating Clinical and Translational Research (CTR ACCEL) Program; University Medical Center New Orleans—U54GM104940: Louisiana Clinical and Translational Science (LA CaTS) Center; University of Colorado Denver, Anschutz Medical Campus— UL1TR002535: Colorado Clinical and Translational Sciences Institute; Mayo Clinic Rochester— UL1TR002377: Mayo Clinic Center for Clinical and Translational Science (CCaTS); Tulane University—UL1TR003096: Center for Clinical and Translational Science; Loyola University Medical Center—UL1TR002389: The Institute for Translational Medicine (ITM); Advocate Health Care Network—UL1TR002389: The Institute for Translational Medicine (ITM); OCHIN—INV-018455: Bill and Melinda Gates Foundationgrant to Sage Bionetworks. Duality of Interest. No potential conflicts of interest relevant to this article were reported. Author Contributions. R.W. wrote the manuscript. M.H. cleaned and analyzed data. R.V. cleaned and analyzed data. A.A. analyzed data. N.A. contributed to the discussion and researched data. C.T.B. reviewed and edited the manuscript. V.G. reviewed and edited the manuscript. S.J. reviewed and edited the manuscript. M.S. reviewed and edited the manuscript. J.S.T. reviewed and edited the manuscript. Y.J.Y. analyzed data. J.B.B. reviewed and edited the manuscript. J.S. reviewed and edited the manuscript. J.M. contributed to the discussion and reviewed and edited the manuscript. R.M. analyzed data, contributed to the methods, and reviewed and edited the manuscript. R.W. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Publisher Copyright:
© 2022 by the American Diabetes Association

Fingerprint

Dive into the research topics of 'Glycemic Control and Clinical Outcomes in U.S. Patients With COVID-19: Data From the National COVID Cohort Collaborative (N3C) Database'. Together they form a unique fingerprint.

Cite this