Abstract
The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.
Original language | English (US) |
---|---|
Article number | 100 |
Journal | Scientific Data |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2023 |
Bibliographical note
Funding Information:Funding sources include: Estonian Ministry of Education and Research; European Commission FP7, H2020, FP7-ENV-2007-1-226224; Estonian Research Council; Helmholtz Infrastructure Initiative FRAM; BMBF 03G0218A; New Zealand Ministry for Business, Innovation & Employment grants UOWX1503, UOWX1802, KENTR1601, NASA ROSES grants 80HQTR19C0015, 80NSSC 21K0499, 80NSSC22K1389, and USGS Landsat Science Team Award 140G0118C0011, Vietnam National Foundation for Science and Technology Development (NAFOSTED), grant number 105.08-2019.329, Federal Ministry for Economic Affairs and Energy, Germany, Award: LAKESAT 50EE1340, EnMAP CalVal 50EE1923, TypSynSat 50EE1915.
Publisher Copyright:
© 2023, The Author(s).
PubMed: MeSH publication types
- Journal Article
- Dataset