Geometry of centroaffine surfaces in ℝ5

Nathaniel Bushek, Jeanne N. Clelland

Research output: Contribution to journalArticle

Abstract

We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in ℝ5\{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.

Original languageEnglish (US)
Article number001
JournalSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
Volume11
DOIs
StatePublished - Jan 6 2015

Fingerprint

Moving Frame
Metric
Invariant
Class

Keywords

  • Cartan's method of moving frames
  • Centroaffine geometry

Cite this

Geometry of centroaffine surfaces in ℝ5 . / Bushek, Nathaniel; Clelland, Jeanne N.

In: Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), Vol. 11, 001, 06.01.2015.

Research output: Contribution to journalArticle

@article{7d35afdcfd3d4a8f9702c6f39bc07bea,
title = "Geometry of centroaffine surfaces in ℝ5",
abstract = "We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in ℝ5\{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.",
keywords = "Cartan's method of moving frames, Centroaffine geometry",
author = "Nathaniel Bushek and Clelland, {Jeanne N.}",
year = "2015",
month = "1",
day = "6",
doi = "10.3842/SIGMA.2015.001",
language = "English (US)",
volume = "11",
journal = "Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)",
issn = "1815-0659",
publisher = "Department of Applied Research, Institute of Mathematics of National Academy of Science of Ukraine",

}

TY - JOUR

T1 - Geometry of centroaffine surfaces in ℝ5

AU - Bushek, Nathaniel

AU - Clelland, Jeanne N.

PY - 2015/1/6

Y1 - 2015/1/6

N2 - We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in ℝ5\{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.

AB - We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in ℝ5\{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.

KW - Cartan's method of moving frames

KW - Centroaffine geometry

UR - http://www.scopus.com/inward/record.url?scp=84920430235&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84920430235&partnerID=8YFLogxK

U2 - 10.3842/SIGMA.2015.001

DO - 10.3842/SIGMA.2015.001

M3 - Article

VL - 11

JO - Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

JF - Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SN - 1815-0659

M1 - 001

ER -