Abstract
Purpose: In patients undergoing stereotactic body radiation therapy (SBRT) for pancreatic adenocarcinoma, the reproducibility of tumor positioning between deep-inspiration breath holds is unclear. We characterized this variation with fiducials at simulation and treatment and investigated whether a patient-specific breath-hold (PSBH) margin would help account for intrafraction variation at treatment. Methods and Materials: We analyzed 20 consecutive patients with pancreatic cancer who underwent SBRT with deep-inspiration breath holds. At simulation, 3 additional breath-hold scans were acquired immediately after the contrast-enhanced planning computed tomography (CT) scan and used to quantify the mean and maximum variations in the simulation fiducial position (Sim_Varavg and Sim_Varmax), as well as to design the internal target volume (ITV) incorporating a PSBH margin. Results: At treatment, a mean of 5 breath-hold cone beam CT (CBCT) scans were acquired per fraction for each patient to quantify the mean and maximum variations in the treatment fiducial position (Tx_Varavg and Tx_Varmax). Various planning target volume (PTV) margins on the gross tumor volume (GTV) versus ITV were evaluated using CBCT scans, with the goal of >95% of fiducials being covered at treatment. The Sim_Varavg and Sim_Varmax were 0.9 ± 0.5 mm and 1.5 ± 0.8 mm in the left-right (LR) direction, 0.9 ± 0.4 mm and 1.4 ± 0.4 mm in the anteroposterior (AP) direction, and 1.5 ± 0.9 mm and 2.1 ± 1.0 mm in the superoinferior (SI) direction, respectively. The Tx_Varavg and Tx_Varmax were 1.2 ± 0.4 mm and 2.0 ± 0.7 mm in the LR direction, 1.1 ± 0.4 mm and 1.8 ± 0.6 mm in the AP direction, and 1.9 ± 1.0 mm and 3.1 ± 1.4 mm in the SI direction, respectively. The ITV was increased by 21.0% ± 8.6% compared with the GTV alone. The PTV margin necessary to encompass >95% of the fiducial locations was 2 mm versus 4 mm in both LR and AP and 4 mm versus 6 mm in SI for the ITV and the GTV, respectively. Conclusions: The interbreath-hold variation is not insignificant, especially in the SI direction. Acquiring multiple breath-hold CT scans at simulation can help quantify the reproducibility of the interbreath hold and design a PSBH margin for treatment.
Original language | English (US) |
---|---|
Article number | 100655 |
Journal | Advances in Radiation Oncology |
Volume | 6 |
Issue number | 2 |
DOIs | |
State | Published - Mar 1 2021 |
Externally published | Yes |
Bibliographical note
Funding Information:Disclosures: Dr Han-Oh reports grants from Allegheny Health Network Cancer Research Fund outside the submitted work. Dr Ding reports grants from the National Institutes of Health, Elekta, and Boston Scientific outside the submitted work. Dr Meyer reports other from Boston Scientific outside the submitted work and royalties from UpToDate, Inc, and Springer. Dr Herman reports grants from OncoSil, Galera, and Augmenix and other from 1440 Foundation outside the submitted work. Dr Narang reports grants from Boston Scientific outside the submitted work.
Publisher Copyright:
© 2021 The Author(s)