Géographie des variétés de spin symplectiques, simplement connexes, de dimension 4. II

Translated title of the contribution: Geography of simply connected spin symplectic 4-manifolds, II

Anar Akhmedov, B. Doug Park

Research output: Contribution to journalArticle

Abstract

Building upon our early work, we construct infinitely many new smooth structures on closed simply connected spin 4-manifolds with nonnegative signature.

Original languageFrench
Pages (from-to)296-298
Number of pages3
JournalComptes Rendus Mathematique
Volume357
Issue number3
DOIs
StatePublished - Mar 1 2019

Fingerprint

Geography
4-manifold
Signature
Non-negative
Closed

Cite this

Géographie des variétés de spin symplectiques, simplement connexes, de dimension 4. II. / Akhmedov, Anar; Park, B. Doug.

In: Comptes Rendus Mathematique, Vol. 357, No. 3, 01.03.2019, p. 296-298.

Research output: Contribution to journalArticle

@article{fc7a3f31403f4bc4a702ea280fea5c1d,
title = "G{\'e}ographie des vari{\'e}t{\'e}s de spin symplectiques, simplement connexes, de dimension 4. II",
abstract = "Building upon our early work, we construct infinitely many new smooth structures on closed simply connected spin 4-manifolds with nonnegative signature.",
author = "Anar Akhmedov and Park, {B. Doug}",
year = "2019",
month = "3",
day = "1",
doi = "10.1016/j.crma.2019.02.002",
language = "French",
volume = "357",
pages = "296--298",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "3",

}

TY - JOUR

T1 - Géographie des variétés de spin symplectiques, simplement connexes, de dimension 4. II

AU - Akhmedov, Anar

AU - Park, B. Doug

PY - 2019/3/1

Y1 - 2019/3/1

N2 - Building upon our early work, we construct infinitely many new smooth structures on closed simply connected spin 4-manifolds with nonnegative signature.

AB - Building upon our early work, we construct infinitely many new smooth structures on closed simply connected spin 4-manifolds with nonnegative signature.

UR - http://www.scopus.com/inward/record.url?scp=85062355555&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85062355555&partnerID=8YFLogxK

U2 - 10.1016/j.crma.2019.02.002

DO - 10.1016/j.crma.2019.02.002

M3 - Article

VL - 357

SP - 296

EP - 298

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 3

ER -