Geodesic-HOF: 3D Reconstruction Without Cutting Corners

Ziyun Wang, Eric A. Mitchell, Volkan Isler, Daniel D. Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Single-view 3D object reconstruction is a challenging fundamental problem in machine perception, largely due to the morphological diversity of objects in the natural world. In particular, high curvature regions are not always represented accurately by methods trained with common set-based loss functions such as Chamfer Distance, resulting in reconstructions short-circuiting the surface or “cutting corners.” To address this issue, we propose an approach to 3D reconstruction that embeds points on the surface of an object into a higher-dimensional space that captures both the original 3D surface as well as geodesic distances between points on the surface of the object. The precise specification of these additional “lifted” coordinates ultimately yields useful surface information without requiring excessive additional computation during either training or testing, in comparison with existing approaches. Our experiments show that taking advantage of these learned lifted coordinates yields better performance for estimating surface normals and generating surfaces than using point cloud reconstructions alone. Further, we find that this learned geodesic embedding space provides useful information for applications such as unsupervised object decomposition.

Original languageEnglish (US)
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages2844-2851
Number of pages8
ISBN (Electronic)9781713835974
StatePublished - 2021
Externally publishedYes
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: Feb 2 2021Feb 9 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume4A

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/2/212/9/21

Bibliographical note

Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved

Fingerprint

Dive into the research topics of 'Geodesic-HOF: 3D Reconstruction Without Cutting Corners'. Together they form a unique fingerprint.

Cite this