Genomic resources for a model in adaptation and speciation research: Characterization of the Poecilia mexicana transcriptome

Joanna L. Kelley, Courtney N. Passow, Martin Plath, Lenin Arias Rodriguez, Muh Ching Yee, Michael Tobler

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


Background: Elucidating the genomic basis of adaptation and speciation is a major challenge in natural systems with large quantities of environmental and phenotypic data, mostly because of the scarcity of genomic resources for non-model organisms. The Atlantic molly (Poecilia mexicana, Poeciliidae) is a small livebearing fish that has been extensively studied for evolutionary ecology research, particularly because this species has repeatedly colonized extreme environments in the form of caves and toxic hydrogen sulfide containing springs. In such extreme environments, populations show strong patterns of adaptive trait divergence and the emergence of reproductive isolation. Here, we used RNA-sequencing to assemble and annotate the first transcriptome of P. mexicana to facilitate ecological genomics studies in the future and aid the identification of genes underlying adaptation and speciation in the system.Description: We provide the first annotated reference transcriptome of P. mexicana. Our transcriptome shows high congruence with other published fish transcriptomes, including that of the guppy, medaka, zebrafish, and stickleback. Transcriptome annotation uncovered the presence of candidate genes relevant in the study of adaptation to extreme environments. We describe general and oxidative stress response genes as well as genes involved in pathways induced by hypoxia or involved in sulfide metabolism. To facilitate future comparative analyses, we also conducted quantitative comparisons between P. mexicana from different river drainages. 106,524 single nucleotide polymorphisms were detected in our dataset, including potential markers that are putatively fixed across drainages. Furthermore, specimens from different drainages exhibited some consistent differences in gene regulation.Conclusions: Our study provides a valuable genomic resource to study the molecular underpinnings of adaptation to extreme environments in replicated sulfide spring and cave environments. In addition, this study adds to the increasing number of genomic resources in the family Poeciliidae, which are widely used in comparative analyses of behavior, ecology, evolution, and medical genetics.

Original languageEnglish (US)
Article number652
JournalBMC Genomics
Issue number1
StatePublished - Nov 21 2012
Externally publishedYes

Bibliographical note

Funding Information:
We thank the local community in Teapa and Tapijulapa for their hospitality and access to the study sites. We thank Z. Culumber, M. Palacios, and R. Riley for assistance in the field, O. E. Cornejo, R. McCoy, B. Haas, and K. K. Dhillon for technical advice, and C. D. Bustamante for financial support. Permits were kindly provided by the Mexican government (DGOPA.00093.120110.-0018). This study was funded by a grant from the National Science Foundation (NSF) to MT and JLK (IOS-1121832), and National Institute of Health National Research Service Award postdoctoral fellowship to JLK (GM087069).


  • De novo assembly
  • Ecological speciation
  • Expression analysis
  • Poeciliidae
  • RNA sequencing
  • Transcriptome


Dive into the research topics of 'Genomic resources for a model in adaptation and speciation research: Characterization of the Poecilia mexicana transcriptome'. Together they form a unique fingerprint.

Cite this