Genomic distribution of maize facultative heterochromatin marked by trimethylation of H3K27

Irina Makarevitch, Steven R. Eichten, Roman Briskine, Amanda J. Waters, Olga N. Danilevskaya, Robert B. Meeley, Chad L. Myers, Matthew W. Vaughn, Nathan M. Springer

Research output: Contribution to journalArticlepeer-review

74 Scopus citations


Trimethylation of histone H3 Lys-27 (H3K27me3) plays a critical role in regulating gene expression during plant and animal development. We characterized the genome-wide distribution of H3K27me3 in five developmentally distinct tissues in maize (Zea mays) plants of two genetic backgrounds, B73 and Mo17. There were more substantial differences in the genome-wide profile of H3K27me3 between different tissues than between the two genotypes. The tissue-specific patterns of H3K27me3 were often associated with differences in gene expression among the tissues and most of the imprinted genes that are expressed solely from the paternal allele in endosperm are targets of H3K27me3. A comparison of the H3K27me3 targets in rice (Oryza sativa), maize, and Arabidopsis thaliana provided evidence for conservation of the H3K27me3 targets among plant species. However, there was limited evidence for conserved targeting of H3K27me3 in the two maize subgenomes derived from whole-genome duplication, suggesting the potential for subfunctionalization of chromatin regulation of paralogs. Genomic profiling of H3K27me3 in loss-of-function mutant lines for Maize Enhancer of zeste-like2 (Mez2) and Mez3, two of the three putative H3K27me3 methyltransferases present in the maize genome, suggested partial redundancy of this gene family for maintaining H3K27me3 patterns. Only a portion of the targets of H3K27me3 required Mez2 and/or Mez3, and there was limited evidence for functional consequences of H3K27me3 at these targets.

Original languageEnglish (US)
Pages (from-to)780-793
Number of pages14
JournalPlant Cell
Issue number3
StatePublished - Mar 2013


Dive into the research topics of 'Genomic distribution of maize facultative heterochromatin marked by trimethylation of H3K27'. Together they form a unique fingerprint.

Cite this