TY - JOUR
T1 - Genome-wide association meta-analysis of circulating odd-numbered chain saturated fatty acids
T2 - Results from the CHARGE Consortium
AU - De Oliveira Otto, Marcia C.
AU - Lemaitre, Rozenn N.
AU - Sun, Qi
AU - King, Irena B.
AU - Wu, Jason H.Y.
AU - Manichaikul, Ani
AU - Rich, Stephen S.
AU - Tsai, Michael Y.
AU - Chen, Y. D.
AU - Fornage, Myriam
AU - Weihua, Guan
AU - Aslibekyan, Stella
AU - Irvin, Marguerite R.
AU - Kabagambe, Edmond K.
AU - Arnett, Donna K.
AU - Jensen, Majken K.
AU - McKnight, Barbara
AU - Psaty, Bruce M.
AU - Steffen, Lyn M.
AU - Smith, Caren E.
AU - Risérus, Ulf
AU - Lind, Lars
AU - Hu, Frank B.
AU - Rimm, Eric B.
AU - Siscovick, David S.
AU - Mozaffarian, Dariush
N1 - Publisher Copyright:
© 2018 de Oliveira Otto et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/5
Y1 - 2018/5
N2 - Background Odd-numbered chain saturated fatty acids (OCSFA) have been associated with potential health benefits. Although some OCSFA (e.g., C15:0 and C17:0) are found in meats and dairy products, sources and metabolism of C19:0 and C23:0 are relatively unknown, and the influence of non-dietary determinants, including genetic factors, on circulating levels of OCSFA is not established. Objective To elucidate the biological processes that influence circulating levels of OCSFA by investigating associations between genetic variation and OCSFA. Design We performed a meta-analysis of genome-wide association studies (GWAS) of plasma phospholipid/erythrocyte levels of C15:0, C17:0, C19:0, and C23:0 among 11,494 individuals of European descent. We also investigated relationships between specific single nucleotide polymorphisms (SNPs) in the lactase (LCT) gene, associated with adult-onset lactase intolerance, with circulating levels of dairy-derived OCSFA, and evaluated associations of candidate sphingolipid genes with C23:0 levels. Results We found no genome-wide significant evidence that common genetic variation is associated with circulating levels of C15:0 or C23:0. In two cohorts with available data, we identified one intronic SNP (rs13361131) in myosin X gene (MYO10) associated with C17:0 level (P = 1.37×10−8), and two intronic SNP (rs12874278 and rs17363566) in deleted in lymphocytic leukemia 1 (DLEU1) region associated with C19:0 level (P = 7.07×10−9). In contrast, when using a candidate-gene approach, we found evidence that three SNPs in LCT (rs11884924, rs16832067, and rs3816088) are associated with circulating C17:0 level (adjusted P = 4×10−2). In addition, nine SNPs in the ceramide synthase 4 (CERS4) region were associated with circulating C23:0 levels (adjusted P<5×10−2). Conclusions Our findings suggest that circulating levels of OCSFA may be predominantly influenced by non-genetic factors. SNPs associated with C17:0 level in the LCT gene may reflect genetic influence in dairy consumption or in metabolism of dairy foods. SNPs associated with C23:0 may reflect a role of genetic factors in the synthesis of sphingomyelin.
AB - Background Odd-numbered chain saturated fatty acids (OCSFA) have been associated with potential health benefits. Although some OCSFA (e.g., C15:0 and C17:0) are found in meats and dairy products, sources and metabolism of C19:0 and C23:0 are relatively unknown, and the influence of non-dietary determinants, including genetic factors, on circulating levels of OCSFA is not established. Objective To elucidate the biological processes that influence circulating levels of OCSFA by investigating associations between genetic variation and OCSFA. Design We performed a meta-analysis of genome-wide association studies (GWAS) of plasma phospholipid/erythrocyte levels of C15:0, C17:0, C19:0, and C23:0 among 11,494 individuals of European descent. We also investigated relationships between specific single nucleotide polymorphisms (SNPs) in the lactase (LCT) gene, associated with adult-onset lactase intolerance, with circulating levels of dairy-derived OCSFA, and evaluated associations of candidate sphingolipid genes with C23:0 levels. Results We found no genome-wide significant evidence that common genetic variation is associated with circulating levels of C15:0 or C23:0. In two cohorts with available data, we identified one intronic SNP (rs13361131) in myosin X gene (MYO10) associated with C17:0 level (P = 1.37×10−8), and two intronic SNP (rs12874278 and rs17363566) in deleted in lymphocytic leukemia 1 (DLEU1) region associated with C19:0 level (P = 7.07×10−9). In contrast, when using a candidate-gene approach, we found evidence that three SNPs in LCT (rs11884924, rs16832067, and rs3816088) are associated with circulating C17:0 level (adjusted P = 4×10−2). In addition, nine SNPs in the ceramide synthase 4 (CERS4) region were associated with circulating C23:0 levels (adjusted P<5×10−2). Conclusions Our findings suggest that circulating levels of OCSFA may be predominantly influenced by non-genetic factors. SNPs associated with C17:0 level in the LCT gene may reflect genetic influence in dairy consumption or in metabolism of dairy foods. SNPs associated with C23:0 may reflect a role of genetic factors in the synthesis of sphingomyelin.
UR - http://www.scopus.com/inward/record.url?scp=85046652144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046652144&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0196951
DO - 10.1371/journal.pone.0196951
M3 - Article
C2 - 29738550
AN - SCOPUS:85046652144
SN - 1932-6203
VL - 13
JO - PloS one
JF - PloS one
IS - 5
M1 - e0196951
ER -