Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows

John B. Cole, George R. Wiggans, Li Ma, Tad S. Sonstegard, Thomas J. Lawlor, Brian A. Crooker, Curtis P. Van Tassell, Jing Yang, Shengwen Wang, Lakshmi K. Matukumalli, Yang Da

Research output: Contribution to journalArticlepeer-review

309 Scopus citations

Abstract

Background: Genome-wide association analysis is a powerful tool for annotating phenotypic effects on the genome and knowledge of genes and chromosomal regions associated with dairy phenotypes is useful for genome and gene-based selection. Here, we report results of a genome-wide analysis of predicted transmitting ability (PTA) of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows.Results: Genome-wide association analysis identified a number of candidate genes and chromosome regions associated with 31 dairy traits in contemporary U.S. Holstein cows. Highly significant genes and chromosome regions include: BTA13's GNAS region for milk, fat and protein yields; BTA7's INSR region and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate, somatic cell score and productive life; BTA2's LRP1B for somatic cell score; BTA14's DGAT1-NIBP region for fat percentage; BTA1's FKBP2 for protein yields and percentage, BTA26's MGMT and BTA6's PDGFRA for protein percentage; BTA18's 53.9-58.7 Mb region for service-sire and daughter calving ease and service-sire stillbirth; BTA18's PGLYRP1-IGFL1 region for a large number of traits; BTA18's LOC787057 for service-sire stillbirth and daughter calving ease; BTA15's CD82, BTA23's DST and the MOCS1-LRFN2 region for daughter stillbirth; and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate. For body conformation traits, BTA11, BTAX, BTA10, BTA5, and BTA26 had the largest concentrations of SNP effects, and PHKA2 of BTAX and REN of BTA16 had the most significant effects for body size traits. For body shape traits, BTAX, BTA19 and BTA3 were most significant. Udder traits were affected by BTA16, BTA22, BTAX, BTA2, BTA10, BTA11, BTA20, BTA22 and BTA25, teat traits were affected by BTA6, BTA7, BTA9, BTA16, BTA11, BTA26 and BTA17, and feet/legs traits were affected by BTA11, BTA13, BTA18, BTA20, and BTA26.Conclusions: Genome-wide association analysis identified a number of genes and chromosome regions associated with 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. The results provide useful information for annotating phenotypic effects on the dairy genome and for building consensus of dairy QTL effects.

Original languageEnglish (US)
Article number408
JournalBMC Genomics
Volume12
DOIs
StatePublished - Aug 11 2011

Bibliographical note

Funding Information:
This project was supported by National Research Initiative Competitive Grant no. 2008-35205-18846 from the USDA National Institute of Food and Agriculture and by a financial contribution from Holstein Association USA. Data analysis was supported in part by National Research Initiative Competitive Grant no. 2008-35205-18846, Agriculture and Food Research Initiative Competitive Grant no. 2011-67015-30333 from the USDA National Institute of Food and Agriculture, project MN-16-043 of the Agricultural Experiment Station at the University of Minnesota, and the Minnesota Supercomputer Institute. The assistance of M. Cowan (Genetic Visions), R. Wilson (Genex Cooperative), C. Dechow (Pennsylvania State University), D. Spurlock (Iowa State University), A. de Vries (University of Florida), and B. Cassell (Virginia Polytechnic Institute and State University) in obtaining DNA samples is appreciated as is manuscript review by S. Hubbard (Agricultural Research Service, USDA). The authors wish to thank two anonymous reviewers and the Associate Editor for constructive comments and suggestions.

Fingerprint

Dive into the research topics of 'Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows'. Together they form a unique fingerprint.

Cite this