Genetic interactions reveal the evolutionary trajectories of duplicate genes

Benjamin Vandersluis, Jeremy Bellay, Gabriel Musso, Michael Costanzo, Balãzs Papp, Franco J. Vizeacoumar, Anastasia Baryshnikova, Brenda Andrews, Charles Boone, Chad L. Myers

Research output: Contribution to journalArticlepeer-review

66 Scopus citations


The characterization of functional redundancy and divergence between duplicate genes is an important step in understanding the evolution of genetic systems. Large-scale genetic network analysis in Saccharomyces cerevisiae provides a powerful perspective for addressing these questions through quantitative measurements of genetic interactions between pairs of duplicated genes, and more generally, through the study of genome-wide genetic interaction profiles associated with duplicated genes. We show that duplicate genes exhibit fewer genetic interactions than other genes because they tend to buffer one another functionally, whereas observed interactions are non-overlapping and reflect their divergent roles. We also show that duplicate gene pairs are highly imbalanced in their number of genetic interactions with other genes, a pattern that appears to result from asymmetric evolution, such that one duplicate evolves or degrades faster than the other and often becomes functionally or conditionally specialized. The differences in genetic interactions are predictive of differences in several other evolutionary and physiological properties of duplicate pairs.

Original languageEnglish (US)
Article number429
JournalMolecular Systems Biology
StatePublished - 2010


  • Saccharomyces cerevisiae
  • duplicate genes
  • functional divergence
  • genetic interactions
  • paralogs


Dive into the research topics of 'Genetic interactions reveal the evolutionary trajectories of duplicate genes'. Together they form a unique fingerprint.

Cite this