Abstract
The maize shoot apical meristem (SAM) comprises a small pool of stem cells that generate all above-ground organs. Although mutational studies have identified genetic networks regulating SAM function, little is known about SAM morphological variation in natural populations. Here we report the use of high-throughput image processing to capture rich SAM size variation within a diverse maize inbred panel. We demonstrate correlations between seedling SAM size and agronomically important adult traits such as flowering time, stem size and leaf node number. Combining SAM phenotypes with 1.2 million single nucleotide polymorphisms (SNPs) via genome-wide association study reveals unexpected SAM morphology candidate genes. Analyses of candidate genes implicated in hormone transport, cell division and cell size confirm correlations between SAM morphology and trait-associated SNP alleles. Our data illustrate that the microscopic seedling SAM is predictive of adult phenotypes and that SAM morphometric variation is associated with genes not previously predicted to regulate SAM size.
Original language | English (US) |
---|---|
Article number | 8974 |
Journal | Nature communications |
Volume | 6 |
DOIs | |
State | Published - Nov 20 2015 |
Bibliographical note
Funding Information:We thank K. Niklas (Cornell) for strategic advice in modelling SAMs as paraboloids. We thank C.T. (Eddy) Yeh (ISU) for assistance in SNP calling; and L. Coffey (ISU) for identifying the correlation between SAM size and flowering time. This work was funded by the National Science Foundation (NSF) grant IOS-1238142.
Publisher Copyright:
© 2015 Macmillan Publishers Limited. All rights reserved.