Generalized Semiclassical Ehrenfest Method: A Route to Wave Function-Free Photochemistry and Nonadiabatic Dynamics with Only Potential Energies and Gradients

Research output: Contribution to journalReview articlepeer-review

1 Scopus citations

Abstract

We reconsider recent methods by which direct dynamics calculations of electronically nonadiabatic processes can be carried out while requiring only adiabatic potential energies and their gradients. We show that these methods can be understood in terms of a new generalization of the well-known semiclassical Ehrenfest method. This is convenient because it eliminates the need to evaluate electronic wave functions and their matrix elements along the mixed quantum-classical trajectories. The new approximations and procedures enabling this advance are the curvature-driven approximation to the time-derivative coupling, the generalized semiclassical Ehrenfest method, and a new gradient correction scheme called the time-derivative matrix (TDM) scheme. When spin-orbit coupling is present, one can carry out dynamics calculations in the fully adiabatic basis using potential energies and gradients calculated without spin-orbit coupling plus the spin-orbit coupling matrix elements. Even when spin-orbit coupling is neglected, the method is useful because it allows calculations by electronic structure methods for which nonadiabatic coupling vectors are unavailable. In order to place the new considerations in context, the article starts out with a review of background material on trajectory surface hopping, the semiclassical Ehrenfest scheme, and methods for incorporating decoherence. We consider both internal conversion and intersystem crossing. We also review several examples from our group of successful applications of the curvature-driven approximation.

Original languageEnglish (US)
Pages (from-to)4396-4426
Number of pages31
JournalJournal of Chemical Theory and Computation
Volume20
Issue number11
DOIs
StatePublished - Jun 11 2024

Bibliographical note

Publisher Copyright:
© 2024 American Chemical Society.

PubMed: MeSH publication types

  • Journal Article
  • Review

Fingerprint

Dive into the research topics of 'Generalized Semiclassical Ehrenfest Method: A Route to Wave Function-Free Photochemistry and Nonadiabatic Dynamics with Only Potential Energies and Gradients'. Together they form a unique fingerprint.

Cite this