Generalized Beamspace Modulation for mmWave MIMO

Shijian Gao, Xiang Cheng, Liuqing Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

As a recently emerging technology, index-based modulation (IBM) has been attracting increasing research interests for its improved bit error rate (BER) performance and power efficiency. At present, the applications of two typical schemes named spatial modulation (SM) and subcarrier index modulation (IM), as well as their variants are introduced to microwave systems. To make IBM applicable in mmWave systems, the special properties of channel environments and system architectures should be taken into account. In this paper, we present a novel IBM scheme termed as generalized beamspace modulation (GBM) for mmWave beamspace multiple-input multiple-output (MIMO) systems. Unlike the frequency or spatial domain in which the existing IBM schemes are typically performed, GBM is implemented in the beamspace. To achieve near-optimal BER performance in GBM systems, a general effective beamspace channel (EBC) optimization method is derived based on the minimum asymptotic pairwise error probability (APEP) criterion. The optimal maximum-likelihood (ML) detector and the lowcomplexity detector are both provided. Thanks to our proposed GBM scheme, the BER performance can be noticeably enhanced compared to plain mmWave systems, with a smaller number of active frequency chains are used during transmission.

Original languageEnglish (US)
Title of host publication2018 IEEE Global Communications Conference, GLOBECOM 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538647271
DOIs
StatePublished - 2018
Externally publishedYes
Event2018 IEEE Global Communications Conference, GLOBECOM 2018 - Abu Dhabi, United Arab Emirates
Duration: Dec 9 2018Dec 13 2018

Publication series

Name2018 IEEE Global Communications Conference, GLOBECOM 2018 - Proceedings

Conference

Conference2018 IEEE Global Communications Conference, GLOBECOM 2018
CountryUnited Arab Emirates
CityAbu Dhabi
Period12/9/1812/13/18

Bibliographical note

Funding Information:
This work was supported by the National Natural Science Foundation of China under Grants 61622101 and 61571020.

Fingerprint Dive into the research topics of 'Generalized Beamspace Modulation for mmWave MIMO'. Together they form a unique fingerprint.

Cite this