Generalization Error Bounds for Kernel Matrix Completion and Extrapolation

Pere Gimenez-Febrer, Alba Pages-Zamora, Georgios B. Giannakis

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Prior information can be incorporated in matrix completion to improve estimation accuracy and extrapolate the missing entries. Reproducing kernel Hilbert spaces provide tools to leverage the said prior information, and derive more reliable algorithms. This paper analyzes the generalization error of such approaches, and presents numerical tests confirming the theoretical results.

Original languageEnglish (US)
Article number8974415
Pages (from-to)326-330
Number of pages5
JournalIEEE Signal Processing Letters
Volume27
DOIs
StatePublished - Jan 1 2020

Keywords

  • generalization error
  • kernel regression
  • Matrix completion
  • Rademacher complexity

Fingerprint Dive into the research topics of 'Generalization Error Bounds for Kernel Matrix Completion and Extrapolation'. Together they form a unique fingerprint.

  • Cite this