Gelled Versus Nongelled Phantom Material for Measurement of MRI-Induced Temperature Increases with Bioimplants

S. M. Park, J. A. Nyenhuis, C. D. Smith, E. J. Lim, K. S. Foster, K. B. Baker, G. Hrdlicka, A. R. Rezai, P. Ruggieri, A. Sharan, F. G. Shellock, P. H. Stypulkowski, J. Tkach

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

Measurements in phantoms are used to predict temperature changes that would occur in vivo for medical implants due to the radio frequency (RF) field in magnetic resonance imaging (MRI). In this study, the impact of concentration of the gelling agent in a saline-based phantom on the RF-induced temperature rise was measured using an apparatus that accurately reproduces the RF environment present in a 1.5-T whole-body MR system. The temperature was measured using fluoroptic thermometry at the electrode and other sites for a deep brain neurostimulation system. The average power deposition in the 30-kg phantom was about 1.5 W/kg. Four phantom formulations were evaluated, using different concentrations of polyacrylic acid (PAA) added to saline solution, with NaCl concentration adjusted to maintain an electrical conductivity near 0.24 S/m. The greatest temperature rises occurred at the electrode, ranging from 16.2 °C for greatest concentration of PAA to 2.9 °C for only saline solution. The temperature rise attained the maximal value for sufficient concentration of PAA. Similar behavior was observed in the temperature versus time relationship near a current-carrying resistor, immersed in gel and saline, which was used to model a localized heat source. The temperature rise for insufficient PAA concentration is reduced due to convection of phantom material. In conclusion, an appropriate gelling agent is required to accurately simulate the thermal properties of body tissues for measurements of RF-induced heating with medical implants.

Original languageEnglish (US)
Pages (from-to)3367-3371
Number of pages5
JournalIEEE Transactions on Magnetics
Volume39
Issue number5 II
DOIs
StatePublished - Sep 2003

Bibliographical note

Funding Information:
Manuscript received January 8, 2003. This work was supported in part by the U.S. National Institutes of Health and Medtronic Corporation. S. M. Park, J. A. Nyenhuis, E. J. Lim, and K. S. Foster are with the School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA (nyenhuis@purdue.edu). C. D. Smith is with SRI International, Menlo Park, CA 94025 USA. K. B. Baker, A. R. Rezai, P. Ruggieri, and J. Tkach are with the Cleveland Clinic, Cleveland, OH 44095 USA. G. Hrdlicka and P. H. Stypulkowski are with the Medtronic, Minneapolis, MN 55421 USA. A. Sharan is with the Thomas Jefferson University, Philadelphia, PA 19017 USA. F. G. Shellock is with the University of Southern California, Los Angeles, CA 90033 USA. Digital Object Identifier 10.1109/TMAG.2003.816259

Keywords

  • Deep brain stimulation
  • Heating
  • Magnetic resonance imaging (MRI)
  • Medical implant
  • Radio frequency

Fingerprint Dive into the research topics of 'Gelled Versus Nongelled Phantom Material for Measurement of MRI-Induced Temperature Increases with Bioimplants'. Together they form a unique fingerprint.

Cite this