Gain without pain: adaptation and increased virulence of Zika virus in vertebrate host without fitness cost in mosquito vector

Anna S. Jaeger, Jeffrey Marano, Kasen K. Riemersma, David Castaneda, Elise M. Pritchard, Julia C. Pritchard, Ellie K. Bohm, John J. Baczenas, Shelby L. O'Connor, James Weger-Lucarelli, Thomas C. Friedrich, Matthew T. Aliota

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Zika virus (ZIKV) is now in a post-pandemic period, for which the potential for re-emergence and future spread is unknown. Adding to this uncertainty is the unique capacity of ZIKV to directly transmit between humans via sexual transmission. Recently, we demonstrated that direct transmission of ZIKV between vertebrate hosts leads to rapid adaptation resulting in enhanced virulence in mice and the emergence of three amino acid substitutions (NS2A-A117V, NS2A-A117T, and NS4A-E19G) shared among all vertebrate-passaged lineages. Here, we further characterized these host-adapted viruses and found that vertebrate-passaged viruses do not lose fitness or transmission potential in mosquitoes. To understand the contribution of genetic changes to the enhanced virulence and transmission phenotype, we engineered these amino acid substitutions, singly and in combination, into a ZIKV infectious clone. We found that NS4A-E19G contributed to the enhanced virulence and mortality phenotype in mice. Further analyses revealed that NS4A-E19G results in increased viral loads and distinct transcriptional patterns for innate immune genes in the brain. None of the substitutions contributed to changes in mosquito vector competence. Together, these findings suggest that direct transmission chains could enable the emergence of more virulent ZIKV strains without compromising mosquito transmission capacity, although the underlying genetics of these adaptations are complex. IMPORTANCE Previously, we modeled direct transmission chains of Zika virus (ZIKV) by serially passaging ZIKV in mice and mosquitoes and found that direct mouse transmission chains selected for viruses with increased virulence in mice and the acquisition of non-synonymous amino acid substitutions. Here, we show that these same mouse-passaged viruses also maintain fitness and transmission capacity in mosquitoes. We used infectious clone-derived viruses to demonstrate that the substitution in nonstructural protein 4A contributes to increased virulence in mice.

Original languageEnglish (US)
JournalJournal of virology
Volume97
Issue number10
DOIs
StatePublished - Oct 2023

Bibliographical note

Publisher Copyright:
Copyright © 2023 Jaeger et al.

Keywords

  • Zika virus
  • arbovirus
  • evolution
  • pathogenesis
  • transmission

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural

Fingerprint

Dive into the research topics of 'Gain without pain: adaptation and increased virulence of Zika virus in vertebrate host without fitness cost in mosquito vector'. Together they form a unique fingerprint.

Cite this