TY - JOUR
T1 - Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae
AU - Sarver, Aaron
AU - DeRisi, Joseph
PY - 2005/10
Y1 - 2005/10
N2 - The mechanisms by which microorganisms sense and detoxify nitric oxide (.NO) are of particular interest due to the central role this molecule plays in innate immunity. We investigated the genetic basis of inducible nitric oxide (.NO) detoxification in Saccharomyces cerevisiae by characterizing the genome-wide transcriptional response to exogenously supplied .NO. Exposure to the .NO-generating compound dipropylenetriamine NONOate resulted in both a general stress response as well as a specific response characterized by the induction of a small set of genes, including the yeast flavohemoglobin YHB1, SSU1, and three additional uncharacterized open reading frames. Transcriptional induction of SSU1, which encodes a putative sulfite transporter, has previously been shown to require the zinc finger transcription factor Fzf1p. Deletion of Fzf1p eliminated the nitrosative stress-specific transcriptional response, whereas overexpression of Fzf1p recapitulated this response in the absence of exogenously supplied .NO. A cis-acting sequence unique to the promoter regions of Fzf1p-dependent genes was found to be sufficient to activate reporter gene activity in an .NO- and Fzf1p-dependent manner. Our results suggest that the presence of .NO or .NO derivatives activates Fzf1p leading to transcriptional induction of a discrete set of target genes that function to protect the cell from .NO-mediated stress.
AB - The mechanisms by which microorganisms sense and detoxify nitric oxide (.NO) are of particular interest due to the central role this molecule plays in innate immunity. We investigated the genetic basis of inducible nitric oxide (.NO) detoxification in Saccharomyces cerevisiae by characterizing the genome-wide transcriptional response to exogenously supplied .NO. Exposure to the .NO-generating compound dipropylenetriamine NONOate resulted in both a general stress response as well as a specific response characterized by the induction of a small set of genes, including the yeast flavohemoglobin YHB1, SSU1, and three additional uncharacterized open reading frames. Transcriptional induction of SSU1, which encodes a putative sulfite transporter, has previously been shown to require the zinc finger transcription factor Fzf1p. Deletion of Fzf1p eliminated the nitrosative stress-specific transcriptional response, whereas overexpression of Fzf1p recapitulated this response in the absence of exogenously supplied .NO. A cis-acting sequence unique to the promoter regions of Fzf1p-dependent genes was found to be sufficient to activate reporter gene activity in an .NO- and Fzf1p-dependent manner. Our results suggest that the presence of .NO or .NO derivatives activates Fzf1p leading to transcriptional induction of a discrete set of target genes that function to protect the cell from .NO-mediated stress.
UR - http://www.scopus.com/inward/record.url?scp=26244465700&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=26244465700&partnerID=8YFLogxK
U2 - 10.1091/mbc.E05-05-0436
DO - 10.1091/mbc.E05-05-0436
M3 - Article
C2 - 16014606
AN - SCOPUS:26244465700
SN - 1059-1524
VL - 16
SP - 4781
EP - 4791
JO - Molecular biology of the cell
JF - Molecular biology of the cell
IS - 10
ER -