Functional cortical associations and their intraclass correlations and heritability as revealed by the fMRI Human Connectome Project

Peka Christova, Jasmine E Joseph, Apostolos P. Georgopoulos

Research output: Contribution to journalArticlepeer-review

Abstract

We report on the functional connectivity (FC), its intraclass correlation (ICC), and heritability among 70 areas of the human cerebral cortex. FC was estimated as the Pearson correlation between averaged prewhitened Blood Oxygenation Level-Dependent time series of cortical areas in 988 young adult participants in the Human Connectome Project. Pairs of areas were assigned to three groups, namely homotopic (same area in the two hemispheres), ipsilateral (both areas in the same hemisphere), and heterotopic (nonhomotopic areas in different hemispheres). ICC for each pair of areas was computed for six genetic groups, namely monozygotic (MZ) twins, dizygotic (DZ) twins, singleton siblings of MZ twins (MZsb), singleton siblings of DZ twins (DZsb), non-twin siblings (SB), and unrelated individuals (UNR). With respect to FC, we found the following. (a) Homotopic FC was stronger than ipsilateral and heterotopic FC; (b) average FCs of left and right cortical areas were highly and positively correlated; and (c) FC varied in a systematic fashion along the anterior–posterior and inferior-superior dimensions, such that it increased from anterior to posterior and from inferior to superior. With respect to ICC, we found the following. (a) Homotopic ICC was significantly higher than ipsilateral and heterotopic ICC, but the latter two did not differ significantly from each other; (b) ICC was highest for MZ twins; (c) ICC of DZ twins was significantly lower than that of the MZ twins and higher than that of the three sibling groups (MZsb, DZsb, SB); and (d) ICC was close to zero for UNR. Finally, with respect to heritability, it was highest for homotopic areas, followed by ipsilateral, and heterotopic; however, it did not differ statistically significantly from each other.

Original languageEnglish (US)
Pages (from-to)1459-1469
Number of pages11
JournalExperimental Brain Research
Volume240
Issue number5
DOIs
StatePublished - May 2022

Bibliographical note

Funding Information:
Partial funding for this study was provided by the University of Minnesota (the Anita Kunin Chair in Women's Healthy Brain Aging, the Brain and Genomics Fund, the McKnight Presidential Chair of Cognitive Neuroscience, and the American Legion Brain Sciences Chair) and the U.S. Department of Veterans Affairs. The sponsors had no role in the current study design, analysis or interpretation, or in the writing of this paper. The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Funding Information:
Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Publisher Copyright:
© 2022, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

Keywords

  • Cortical connectivity
  • Heritability
  • Intraclass correlation
  • Twins

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Functional cortical associations and their intraclass correlations and heritability as revealed by the fMRI Human Connectome Project'. Together they form a unique fingerprint.

Cite this