Fulvestrant regulates epidermal growth factor (EGF) family ligands to activate EGF receptor (EGFR) signaling in breast cancer cells

Xihong Zhang, Michael R. Diaz, Douglas Yee

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Estrogen receptor-α (ER) targeted therapies are routinely used to treat breast cancer. However, patient responses are limited by resistance to endocrine therapy. Breast cancer cells resistant to the pure steroidal ER antagonist fulvestrant (fulv) demonstrate increased activation of epidermal growth factor receptor (EGFR) family members and downstream ERK signaling. In this study, we investigated the effects of fulv on EGFR signaling and ligand regulation in several breast cancer cell lines. EGFR/HER2/HER3 phosphorylation and ERK1,2 activation were seen after 24-48 h after fulvestrant treatment in ER-positive breast cancer cell lines. 4-Hydroxy-tamoxifen and estradiol did not cause EGFR activation. Fulvestrant did not affect EGFR expression. Cycloheximide abolished the ability of fulv to activate EGFR suggesting the autocrine production of EGFR ligands might be responsible for fulvestrant induced EGFR signaling. qRT-PCR results showed fulv differentially regulated EGFR ligands; HB-EGF mRNA was increased, while amphiregulin and epiregulin mRNAs were decreased. Fulvestrant induced EGFR activation and upregulation of EGFR ligands were ER dependent since fulv treatment in C4-12, an ER-negative cell line derivative of MCF-7 cells, did not result in EGFR activation or change in ligand mRNA levels. ER downregulation by siRNA induced similar EGFR activation and regulation of EGFR ligands as fulvestrant. Neutralizing HB-EGF antibody blocked fulv-induced EGFR activation. Combination of fulv and EGFR family tyrosine kinase inhibitors (erlotinib and lapatinib) significantly decreased EGFR signaling and cell survival. In conclusion, fulvestrant-activated EGFR family members accompanied by ER dependent upregulation of HB-EGF within 48 h. EGF receptor or ligand inhibition might enhance or prolong the therapeutic effects of targeting ER by fulvestrant in breast cancer.

Original languageEnglish (US)
Pages (from-to)351-360
Number of pages10
JournalBreast Cancer Research and Treatment
Volume139
Issue number2
DOIs
StatePublished - Jun 1 2013

Fingerprint

Epidermal Growth Factor Receptor
Epidermal Growth Factor
Breast Neoplasms
Ligands
Estrogen Receptors
fulvestrant
Cell Line
Messenger RNA
Up-Regulation
Aptitude
MCF-7 Cells
Therapeutic Uses
Therapeutics
Cycloheximide
Protein-Tyrosine Kinases
Small Interfering RNA
Estradiol
Cell Survival
Down-Regulation
Phosphorylation

Keywords

  • Breast cancer cell lines
  • EGFR
  • EGFR ligands
  • Fulvestrant

Cite this

@article{dfa8b1a6cf524267a317a4bcca76ec8b,
title = "Fulvestrant regulates epidermal growth factor (EGF) family ligands to activate EGF receptor (EGFR) signaling in breast cancer cells",
abstract = "Estrogen receptor-α (ER) targeted therapies are routinely used to treat breast cancer. However, patient responses are limited by resistance to endocrine therapy. Breast cancer cells resistant to the pure steroidal ER antagonist fulvestrant (fulv) demonstrate increased activation of epidermal growth factor receptor (EGFR) family members and downstream ERK signaling. In this study, we investigated the effects of fulv on EGFR signaling and ligand regulation in several breast cancer cell lines. EGFR/HER2/HER3 phosphorylation and ERK1,2 activation were seen after 24-48 h after fulvestrant treatment in ER-positive breast cancer cell lines. 4-Hydroxy-tamoxifen and estradiol did not cause EGFR activation. Fulvestrant did not affect EGFR expression. Cycloheximide abolished the ability of fulv to activate EGFR suggesting the autocrine production of EGFR ligands might be responsible for fulvestrant induced EGFR signaling. qRT-PCR results showed fulv differentially regulated EGFR ligands; HB-EGF mRNA was increased, while amphiregulin and epiregulin mRNAs were decreased. Fulvestrant induced EGFR activation and upregulation of EGFR ligands were ER dependent since fulv treatment in C4-12, an ER-negative cell line derivative of MCF-7 cells, did not result in EGFR activation or change in ligand mRNA levels. ER downregulation by siRNA induced similar EGFR activation and regulation of EGFR ligands as fulvestrant. Neutralizing HB-EGF antibody blocked fulv-induced EGFR activation. Combination of fulv and EGFR family tyrosine kinase inhibitors (erlotinib and lapatinib) significantly decreased EGFR signaling and cell survival. In conclusion, fulvestrant-activated EGFR family members accompanied by ER dependent upregulation of HB-EGF within 48 h. EGF receptor or ligand inhibition might enhance or prolong the therapeutic effects of targeting ER by fulvestrant in breast cancer.",
keywords = "Breast cancer cell lines, EGFR, EGFR ligands, Fulvestrant",
author = "Xihong Zhang and Diaz, {Michael R.} and Douglas Yee",
year = "2013",
month = "6",
day = "1",
doi = "10.1007/s10549-013-2541-y",
language = "English (US)",
volume = "139",
pages = "351--360",
journal = "Breast Cancer Research and Treatment",
issn = "0167-6806",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - Fulvestrant regulates epidermal growth factor (EGF) family ligands to activate EGF receptor (EGFR) signaling in breast cancer cells

AU - Zhang, Xihong

AU - Diaz, Michael R.

AU - Yee, Douglas

PY - 2013/6/1

Y1 - 2013/6/1

N2 - Estrogen receptor-α (ER) targeted therapies are routinely used to treat breast cancer. However, patient responses are limited by resistance to endocrine therapy. Breast cancer cells resistant to the pure steroidal ER antagonist fulvestrant (fulv) demonstrate increased activation of epidermal growth factor receptor (EGFR) family members and downstream ERK signaling. In this study, we investigated the effects of fulv on EGFR signaling and ligand regulation in several breast cancer cell lines. EGFR/HER2/HER3 phosphorylation and ERK1,2 activation were seen after 24-48 h after fulvestrant treatment in ER-positive breast cancer cell lines. 4-Hydroxy-tamoxifen and estradiol did not cause EGFR activation. Fulvestrant did not affect EGFR expression. Cycloheximide abolished the ability of fulv to activate EGFR suggesting the autocrine production of EGFR ligands might be responsible for fulvestrant induced EGFR signaling. qRT-PCR results showed fulv differentially regulated EGFR ligands; HB-EGF mRNA was increased, while amphiregulin and epiregulin mRNAs were decreased. Fulvestrant induced EGFR activation and upregulation of EGFR ligands were ER dependent since fulv treatment in C4-12, an ER-negative cell line derivative of MCF-7 cells, did not result in EGFR activation or change in ligand mRNA levels. ER downregulation by siRNA induced similar EGFR activation and regulation of EGFR ligands as fulvestrant. Neutralizing HB-EGF antibody blocked fulv-induced EGFR activation. Combination of fulv and EGFR family tyrosine kinase inhibitors (erlotinib and lapatinib) significantly decreased EGFR signaling and cell survival. In conclusion, fulvestrant-activated EGFR family members accompanied by ER dependent upregulation of HB-EGF within 48 h. EGF receptor or ligand inhibition might enhance or prolong the therapeutic effects of targeting ER by fulvestrant in breast cancer.

AB - Estrogen receptor-α (ER) targeted therapies are routinely used to treat breast cancer. However, patient responses are limited by resistance to endocrine therapy. Breast cancer cells resistant to the pure steroidal ER antagonist fulvestrant (fulv) demonstrate increased activation of epidermal growth factor receptor (EGFR) family members and downstream ERK signaling. In this study, we investigated the effects of fulv on EGFR signaling and ligand regulation in several breast cancer cell lines. EGFR/HER2/HER3 phosphorylation and ERK1,2 activation were seen after 24-48 h after fulvestrant treatment in ER-positive breast cancer cell lines. 4-Hydroxy-tamoxifen and estradiol did not cause EGFR activation. Fulvestrant did not affect EGFR expression. Cycloheximide abolished the ability of fulv to activate EGFR suggesting the autocrine production of EGFR ligands might be responsible for fulvestrant induced EGFR signaling. qRT-PCR results showed fulv differentially regulated EGFR ligands; HB-EGF mRNA was increased, while amphiregulin and epiregulin mRNAs were decreased. Fulvestrant induced EGFR activation and upregulation of EGFR ligands were ER dependent since fulv treatment in C4-12, an ER-negative cell line derivative of MCF-7 cells, did not result in EGFR activation or change in ligand mRNA levels. ER downregulation by siRNA induced similar EGFR activation and regulation of EGFR ligands as fulvestrant. Neutralizing HB-EGF antibody blocked fulv-induced EGFR activation. Combination of fulv and EGFR family tyrosine kinase inhibitors (erlotinib and lapatinib) significantly decreased EGFR signaling and cell survival. In conclusion, fulvestrant-activated EGFR family members accompanied by ER dependent upregulation of HB-EGF within 48 h. EGF receptor or ligand inhibition might enhance or prolong the therapeutic effects of targeting ER by fulvestrant in breast cancer.

KW - Breast cancer cell lines

KW - EGFR

KW - EGFR ligands

KW - Fulvestrant

UR - http://www.scopus.com/inward/record.url?scp=84878759749&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878759749&partnerID=8YFLogxK

U2 - 10.1007/s10549-013-2541-y

DO - 10.1007/s10549-013-2541-y

M3 - Article

C2 - 23686416

AN - SCOPUS:84878759749

VL - 139

SP - 351

EP - 360

JO - Breast Cancer Research and Treatment

JF - Breast Cancer Research and Treatment

SN - 0167-6806

IS - 2

ER -