Fully automated needle detection in transrectal ultrasound series for repeated prostate biopsies

Ethan Leng, Sheng Xu, Peter A. Pinto, Bradford J. Wood

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Needle identification in transrectal ultrasound (TRUS) guided prostate biopsy is important for documenting the positions of tissue samples, which can help physicians reach missed tumors in repeated biopsies. Due to the inherent high signal-to-noise ratio of ultrasound and the frequent occurrence of out-of-plane needle insertions that present indistinctly on TRUS images, robust needle identification is difficult. In this paper, we describe a novel method for the automatic detection and distance measurement of biopsy needles in TRUS that uses the concept of support vector machines (SVMs). Recorded frames are first retrospectively analyzed based on a series of quantifiable characteristics, and then a set of training examples are formed from both frames with insertions and those without. Using the training set, our algorithm is able to determine whether a given prospective frame contains a needle insertion. The algorithm has been evaluated retrospectively on TRUS video data with a total of more than 95,000 frames, and detected needle deployments with sensitivity and specificity of 98.4% and >99:9%, respectively. Furthermore, given the nature of an SVM model, the algorithm can be easily adapted for real-time applications.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2013
Subtitle of host publicationImage-Guided Procedures, Robotic Interventions, and Modeling
DOIs
StatePublished - Jun 10 2013
EventMedical Imaging 2013: Image-Guided Procedures, Robotic Interventions, and Modeling - Lake Buena Vista, FL, United States
Duration: Feb 12 2013Feb 14 2013

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume8671
ISSN (Print)0277-786X

Other

OtherMedical Imaging 2013: Image-Guided Procedures, Robotic Interventions, and Modeling
CountryUnited States
CityLake Buena Vista, FL
Period2/12/132/14/13

Keywords

  • Biopsy
  • Machine learning
  • Needle detection
  • Prostate
  • Support vector machine
  • Transrectal ultrasound

Fingerprint Dive into the research topics of 'Fully automated needle detection in transrectal ultrasound series for repeated prostate biopsies'. Together they form a unique fingerprint.

  • Cite this

    Leng, E., Xu, S., Pinto, P. A., & Wood, B. J. (2013). Fully automated needle detection in transrectal ultrasound series for repeated prostate biopsies. In Medical Imaging 2013: Image-Guided Procedures, Robotic Interventions, and Modeling [86711O] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 8671). https://doi.org/10.1117/12.2007392