Fto immunoreactivity is widespread in the rodent brain and abundant in feeding-related sites, but the number of Fto-positive cells is not affected by changes in energy balance

Pawel K. Olszewski, Katarzyna J. Radomska, Kedar Ghimire, Anica Klockars, Caroline Ingman, Agnieszka M. Olszewska, Robert Fredriksson, Allen S Levine, Helgi B. Schiöth

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

A single nucleotide polymorphism in the FTO gene is associated with obesity in humans. Evidence gathered in animals mainly relates energy homeostasis to the central FTO mRNA levels, but our knowledge of the Fto protein distribution and regulation is limited. Fto, a demethylase and transcriptional coactivator, is thought to regulate expression of other genes. Herein, we examined Fto immunoreactivity (IR) in the mouse and rat brain with emphasis on sites governing energy balance. We also studied whether energy status affects central Fto IR. We report that Fto IR, limited to nuclear profiles, is widespread in the brain, in- and outside feeding circuits; it shows a very similar distribution in feeding-related sites in mice and rats. Several areas regulating energy homeostasis display enhanced intensity of Fto staining: the arcuate, paraventricular, supraoptic, dorsomedial, ventromedial nuclei, and dorsal vagal complex. Some regions mediating feeding reward, including the bed nucleus of the stria terminalis, have ample Fto IR. We found that differences in energy status between rats fed ad libitum, deprived or refed following deprivation, did not affect the number of Fto-positive nuclei in 10 sites governing consumption for energy or reward. We conclude that Fto IR, widespread in the rodent brain, is particularly abundant in feeding circuits, but the number of Fto-positive neurons is unaffected by changes in energy balance.

Original languageEnglish (US)
Pages (from-to)248-253
Number of pages6
JournalPhysiology and Behavior
Volume103
Issue number2
DOIs
StatePublished - May 3 2011

Bibliographical note

Funding Information:
The studies were supported by the Swedish Research Council (Medicine) , AFA Insurance , Swedish Brain Research Foundation , Svenska Läkaresällskapet , Åhlens Foundation , Novo Nordisk Foundation , Göran Gustafssons Foundation , National Institute of Drug Abuse , Systembolagets råd för alkoholforskning , and National Institute of Diabetes and Ingestive and Kidney Diseases .

Keywords

  • Brain
  • Feeding
  • Obesity

Fingerprint

Dive into the research topics of 'Fto immunoreactivity is widespread in the rodent brain and abundant in feeding-related sites, but the number of Fto-positive cells is not affected by changes in energy balance'. Together they form a unique fingerprint.

Cite this