FTDL: A tailored FPGA-Overlay for deep learning with high scalability

Runbin Shi, Yuhao Ding, Xuechao Wei, He Li, Hang Liu, Hayden K.H. So, Caiwen Ding

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

Fast inference is of paramount value to a wide range of deep learning applications. This work presents FTDL, a highly-scalable FPGA overlay framework for deep learning applications, to address the architecture and hardware mismatch faced by traditional efforts. The FTDL overlay is specifically optimized for the tiled structure of FPGAs, thereby achieving post-place-and-route operating frequencies exceeding 88 % of the theoretical maximum across different devices and design scales. A flexible compilation framework efficiently schedules matrix multiply and convolution operations of large neural network inference on the overlay and achieved over 80 % hardware efficiency on average. Taking advantage of both high operating frequency and hardware efficiency, FTDL achieves 402.6 and 151.2 FPS with GoogLeNet and ResNet50 on ImageNet, respectively, while operating at a power efficiency of 27.6 GOPS/W, making it up to 7.7 × higher performance and 1.9× more power-efficient than the state-of-the-art.

Original languageEnglish (US)
Title of host publication2020 57th ACM/IEEE Design Automation Conference, DAC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781450367257
DOIs
StatePublished - Jul 2020
Externally publishedYes
Event57th ACM/IEEE Design Automation Conference, DAC 2020 - Virtual, San Francisco, United States
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings - Design Automation Conference
Volume2020-July
ISSN (Print)0738-100X

Conference

Conference57th ACM/IEEE Design Automation Conference, DAC 2020
Country/TerritoryUnited States
CityVirtual, San Francisco
Period7/20/207/24/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Fingerprint

Dive into the research topics of 'FTDL: A tailored FPGA-Overlay for deep learning with high scalability'. Together they form a unique fingerprint.

Cite this