TY - JOUR
T1 - Free radical-mediated postischemic injury in renal transplantation
AU - Paller, Mark S.
PY - 1992
Y1 - 1992
N2 - Oxygen free radicals are generated during reperfusion of ischemic organs. Studies employing several species of laboratory animal (rat, dog, pig, rabbit, mouse) have documented protective effects of a variety of free-radical scavengers and antioxidants when administered before or immediately preceding reperfusion of ischemic kidneys. These protective agents include superoxide dismutase, dimethylthiorea, dimethyl sulfoxide, αtocopherol, glutathione, the iron chelator deferoxamine, probucol, allopurinol and oxypurinol, and the spin-trapping agent PBN. Furthermore, deficiency of antioxidants (selenium, αtocopherol, orcatalase) exacerbates postischemic renal injury. These findings have been applied to renal transplantation in an attempt to decrease the incidence of posttransplantation acute renal failure. This is important because acute renal failure results in morbidity, increases hospital stay and the cost of transplantation, and complicates the use of cyclosporine. In porcine and in canine kidney transplantation, superoxide dismutase and allopurinol have provided renal protection. Transplantation is complicated because there may be prolonged hypoperfusion before harvesting plus a brief period of total ischemia during harvesting, followed by a prolonged period of cold ischemia and/or reperfusion, then followed by another brief period of ischemia and reperfusion during transplantation. Injury may occur at each of these phases by different mechanisms.
AB - Oxygen free radicals are generated during reperfusion of ischemic organs. Studies employing several species of laboratory animal (rat, dog, pig, rabbit, mouse) have documented protective effects of a variety of free-radical scavengers and antioxidants when administered before or immediately preceding reperfusion of ischemic kidneys. These protective agents include superoxide dismutase, dimethylthiorea, dimethyl sulfoxide, αtocopherol, glutathione, the iron chelator deferoxamine, probucol, allopurinol and oxypurinol, and the spin-trapping agent PBN. Furthermore, deficiency of antioxidants (selenium, αtocopherol, orcatalase) exacerbates postischemic renal injury. These findings have been applied to renal transplantation in an attempt to decrease the incidence of posttransplantation acute renal failure. This is important because acute renal failure results in morbidity, increases hospital stay and the cost of transplantation, and complicates the use of cyclosporine. In porcine and in canine kidney transplantation, superoxide dismutase and allopurinol have provided renal protection. Transplantation is complicated because there may be prolonged hypoperfusion before harvesting plus a brief period of total ischemia during harvesting, followed by a prolonged period of cold ischemia and/or reperfusion, then followed by another brief period of ischemia and reperfusion during transplantation. Injury may occur at each of these phases by different mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=0026750545&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026750545&partnerID=8YFLogxK
U2 - 10.3109/08860229209106627
DO - 10.3109/08860229209106627
M3 - Article
C2 - 1509158
AN - SCOPUS:0026750545
SN - 0886-022X
VL - 14
SP - 257
EP - 260
JO - Renal Failure
JF - Renal Failure
IS - 3
ER -