Abstract
Background: Aberrant activation of the androgen receptor (AR) is a major factor highly relevant to castration-resistant progression of prostate cancer (PCa). FOXO1, a key downstream effector of PTEN, inhibits androgen-independent activation of the AR. However, the underlying mechanism remains elusive. Methods: The inhibitory effect of FOXO1 on full-length and constitutively active splice variants of the AR was examined by luciferase reporter assays and real-time reverse transcription polymerase chain reaction (RT-qPCR). In vitro protein binding assays and western blot analyses were used to determine the regions in FOXO1 and AR responsible for their interaction. Results: We found that a putative transcription repression domain in the NH2-terminus of FOXO1 is dispensable for FOXO1 inhibition of the AR. In vitro protein binding assays showed that FOXO1 binds to the transcription activation unit 5 (TAU5) motif in the AR NH2-terminal domain (NTD), a region required for recruitment of p160 activators including SRC-1. Ectopic expression of SRC-1 augmented transcriptional activity of some, but not all AR splice variants examined. Forced expression of FOXO1 blocked the effect of SRC-1 on AR variants' transcriptional activity by decreasing the binding of SRC-1 to the AR NTD. Ectopic expression of FOXO1 inhibited expression of endogenous genes activated primarily by alternatively spliced AR variants in human castration-resistant PCa 22Rv1 cells. Conclusions: FOXO1 binds to the TAU5 motif in the AR NTD and inhibits ligand-independent activation of AR splice variants, suggesting the PTEN/FOXO1 pathway as a potential therapeutic target for inhibition of aberrant AR activation and castration-resistant PCa growth.
Original language | English (US) |
---|---|
Pages (from-to) | 1017-1027 |
Number of pages | 11 |
Journal | Prostate |
Volume | 73 |
Issue number | 10 |
DOIs | |
State | Published - Jul 2013 |
Keywords
- FOXO1
- PTEN
- androgen receptor
- prostate cancer