Abstract
The problem of stabilization of rigid bodies has received a great deal of attention for many years. People have developed a variety of feedback control laws to meet their design requirements and have formulated various but mostly open loop numerical algorithms for the dynamics of the corresponding closed loop systems. Since the conserved quantities such as energy, momentum, and symmetry play an important role in the dynamics, we investigate the conserved quantities for the closed loop control systems which formally or asymptotically stabilize rigid body rotation and modify the open loop numerical algorithms so that they preserve these important properties. Using several examples, the authors first use the open loop algorithm to simulate the tumbling rigid body actions and then use the resulting closed loop one to stabilize them.
Original language | English (US) |
---|---|
Article number | 674910 |
Journal | Mathematical Problems in Engineering |
Volume | 2014 |
DOIs | |
State | Published - 2014 |