Forcing of self-excited round jet diffusion flames

Matthew P. Juniper, Larry K.B. Li, Joseph W. Nichols

Research output: Contribution to journalConference articlepeer-review

42 Scopus citations

Abstract

In this experimental and numerical study, two types of round jet are examined under acoustic forcing. The first is a non-reacting low density jet (density ratio 0.14). The second is a buoyant jet diffusion flame at a Reynolds number of 1100 (density ratio of unburnt fluids 0.5). Both jets have regions of strong absolute instability at their base and this causes them to exhibit strong self-excited bulging oscillations at welldefined natural frequencies. This study particularly focuses on the heat release of the jet diffusion flame, which oscillates at the same natural frequency as the bulging mode, due to the absolutely unstable shear layer just outside the flame. The jets are forced at several amplitudes around their natural frequencies. In the non-reacting jet, the frequency of the bulging oscillation locks into the forcing frequency relatively easily. In the jet diffusion flame, however, very large forcing amplitudes are required to make the heat release lock into the forcing frequency. Even at these high forcing amplitudes, the natural mode takes over again from the forced mode in the downstream region of the flow, where the perturbation is beginning to saturate non-linearly and where the heat release is high. This raises the possibility that, in a flame with large regions of absolute instability, the strong natural mode could saturate before the forced mode, weakening the coupling between heat release and incident pressure perturbations, hence weakening the feedback loop that causes combustion instability.

Original languageEnglish (US)
Pages (from-to)1191-1198
Number of pages8
JournalProceedings of the Combustion Institute
Volume32 I
Issue number1
DOIs
StatePublished - Jan 1 2009
Event32nd International Symposium on Combustion - Montreal, QC, Canada
Duration: Aug 3 2008Aug 8 2008

Keywords

  • Absolute instability
  • Combustion instability
  • Laminar
  • Non-premixed

Fingerprint Dive into the research topics of 'Forcing of self-excited round jet diffusion flames'. Together they form a unique fingerprint.

Cite this