Forced expression of the cell cycle inhibitor p57Kip2 in cardiomyocytes attenuates ischemia-reperfusion injury in the mouse heart

Sheila A. Haley, Ting Zhao, Lijun Zou, Jan E. Klysik, James F. Padbury, Lazaros K. Kochilas

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Background. Myocardial hypoxic-ischemic injury is the cause of significant morbidity and mortality worldwide. The cardiomyocyte response to hypoxic-ischemic injury is known to include changes in cell cycle regulators. The cyclin-dependent kinase inhibitor p57Kip2 is involved in cell cycle control, differentiation, stress signaling and apoptosis. In contrast to other cyclin-dependent kinase inhibitors, p57Kip2 expression diminishes during postnatal life and is reactivated in the adult heart under conditions of cardiac stress. Overexpression of p57Kip2 has been previously shown to prevent apoptotic cell death in vitro by inhibiting stress-activated kinases. Therefore, we hypothesized that p57Kip2 has a protective role in cardiomyocytes under hypoxic conditions. To investigate this hypothesis, we created a transgenic mouse (R26loxpTA-p57k/+) that expresses p57Kip2 specifically in cardiac tissue under the ventricular cardiomyocyte promoter Mlc2v. Results. Transgenic mice with cardiac specific overexpression of p57Kip2 are viable, fertile and normally active and their hearts are morphologically indistinguishable from the control hearts and have similar heart weight/body weight ratio. The baseline functional parameters, including left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), LVdp/dtmax, heart rate (HR) and rate pressure product (RPR) were not significantly different between the different groups as assessed by the Langendorff perfused heart preparation. However, after subjecting the heart ex vivo to 30 minutes of ischemia-reperfusion injury, the p57Kip2 overexpressing hearts demonstrated preserved cardiac function compared to control mice with higher left ventricular developed pressure (63 ± 15 vs 30 ± 6 mmHg, p = 0.05), rate pressure product (22.8 ± 4.86 vs 10.4 ± 2.1 × 103bpm × mmHg, p < 0.05) and coronary flow (3.5 ± 0.5 vs 2.38 ± 0.24 ml/min, p <0.05). Conclusion. These data suggest that forced cardiac expression of p57Kip2 does not affect myocardial growth, differentiation and baseline function but attenuates injury from ischemia-reperfusion in the adult mouse heart.

Original languageEnglish (US)
Article number4
JournalBMC Physiology
Volume8
Issue number1
DOIs
StatePublished - 2008

Bibliographical note

Funding Information:
The CT3 antibody developed by C.C.-J. Lin and the MF20 antibody developed by D.A. Fischman were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biological Sciences, Iowa City, IA 52242. We appreciated fruitful discussions and feedback from Dr. James Cross, University of Calgary. This work was supported by the NIH grants P20RR018728 (S.A.H., T.C.Z., L.Z., J.F.P, and L.K.K.) and P20RR015578-06 (J.E.K.).

Fingerprint

Dive into the research topics of 'Forced expression of the cell cycle inhibitor p57Kip2 in cardiomyocytes attenuates ischemia-reperfusion injury in the mouse heart'. Together they form a unique fingerprint.

Cite this