FOGL: Federated Object Grasping Learning

Seok Kyu Kang, Changhyun Choi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Federated learning is a promising technique for training global models in a data-decentralized environment. In this paper, we propose a federated learning approach for robotic object grasping. The main challenge is that the data collected by multiple robots deployed in different environments tends to form heterogeneous data distributions (i.e., non-IID) and that the existing federated learning methods on such data distributions show serious performance degradation. To tackle this problem, we propose federated object grasping learning (FOGL) that uses cross-evaluation in a general federated learning process to assess the training performance of robots. We cluster robots with similar training patterns and perform independent federated learning on each cluster. Finally, we integrate the global models for each cluster through an ensemble inference. We apply FOGL to various federated learning scenarios in robotic object grasping and show state-of-the-art performance on the Cornell grasping dataset.

Original languageEnglish (US)
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5851-5857
Number of pages7
ISBN (Electronic)9798350323658
DOIs
StatePublished - 2023
Externally publishedYes
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: May 29 2023Jun 2 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2023-May
ISSN (Print)1050-4729

Conference

Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom
CityLondon
Period5/29/236/2/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

Fingerprint

Dive into the research topics of 'FOGL: Federated Object Grasping Learning'. Together they form a unique fingerprint.

Cite this