Abstract
We present results of 3-neutrino flavor evolution simulations for the neutronization burst from an O-Ne-Mg core-collapse supernova. We find that nonlinear neutrino self-coupling engineers a single spectral feature of stepwise conversion in the inverted neutrino mass hierarchy case and in the normal mass hierarchy case, a superposition of two such features corresponding to the vacuum neutrino mass-squared differences associated with solar and atmospheric neutrino oscillations. These neutrino spectral features offer a unique potential probe of the conditions in the supernova environment and may allow us to distinguish between O-Ne-Mg and Fe core-collapse supernovae.
Original language | English (US) |
---|---|
Article number | 021101 |
Journal | Physical review letters |
Volume | 100 |
Issue number | 2 |
DOIs | |
State | Published - Jan 18 2008 |